Найти две разные общие точки плоскостей. Взаимное расположение двух плоскостей. Признак параллельности плоскостей. Прямая, пересекающая плоскость

Две плоскости в пространстве могут быть либо взаимно параллель-ными, либо пересекающимися.

Плоскости параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости.


Выбор сторон треугольников произволен, так как только построением можно точно определить, какая действительно сторона и какого треугольника пересечет плоскость другого. Выбор вспомогательной плоскости также произволен, так как прямую общего положения, какими являются все стороны ∆ABC и ∆DEF , можно заключить в горизонтально проецирующую или во фронтально проецирующую плоскости.

1. Для построения точки M использована горизонтально проецирующая вспомогательная плоскость Ф (Ф AB треугольника ABC (AB Î Ф ).

2. Строим линию пересечения (на чертеже она задана точками 1 и 2) вспомогательной плоскости Ф (Ф 2) и плоскости ∆DEF .

3. Находим точку M пересечения прямой 1–2 с прямой AB .

Найдена одна точка M искомой линии пересечения.

4. Для построения точки N использована горизонтально проецирующая плоскость Р (Р 2), в которую заключена сторона EF треугольника DEF .

Построение аналогичны предыдущим.

5. Определение видимости элементов на плоскости П 2 выполнено с помощью фронтально конкурирующих точек 1=2 и 5=2.

Точка 5 (5ÎАВ ) расположена дальше от оси х чем точка 1 (1Î DF ), поэтому на плоскости П 2 часть треугольника ABC , расположенная в сторону точки 1, закрывает собой часть треугольника DEF , расположенную от линии пересечения в сторону точки 5.


В планиметрии плоскость является одной из основных фигур, поэтому, очень важно иметь ясное представление о ней. Эта статья создана с целью раскрытия этой темы. Сначала дано понятие плоскости, ее графическое представление и показаны обозначения плоскостей. Далее плоскость рассматривается вместе с точкой, прямой или другой плоскостью, при этом возникают варианты из взаимного расположения в пространстве. Во втором и третьем и четвертом пункте статьи как раз разобраны все варианты взаимного расположения двух плоскостей, прямой и плоскости, а также точки и плоскости, приведены основные аксиомы и графические иллюстрации. В заключении даны основные способы задания плоскости в пространстве.

Навигация по странице.

Плоскость – основные понятия, обозначения и изображение.

Простейшими и основными геометрическими фигурами в трехмерном пространстве являются точка, прямая и плоскость. Мы уже имеем представление о точке и прямой на плоскости . Если поместить плоскость, на которой изображены точки и прямые, в трехмерное пространство, то мы получим точки и прямые в пространстве. Представление о плоскости в пространстве позволяет получить, к примеру, поверхность стола или стены. Однако, стол или стена имеют конечные размеры, а плоскость простирается за их границы в бесконечность.

Точки и прямые в пространстве обозначаются также как и на плоскости – большими и маленькими латинскими буквами соответственно. Например, точки А и Q , прямые а и d . Если заданы две точки, лежащие на прямой, то прямую можно обозначить двумя буквами, соответствующими этим точкам. К примеру, прямая АВ или ВА проходит через точки А и В . Плоскости принято обозначать маленькими греческими буквами, например, плоскости , или .

При решении задач возникает необходимость изображать плоскости на чертеже. Плоскость обычно изображают в виде параллелограмма или произвольной простой замкнутой области.

Плоскость обычно рассматривается вместе с точками, прямыми или другими плоскостями, при этом возникают различные варианты их взаимного расположения. Переходим к их описанию.

Взаимное расположение плоскости и точки.

Начнем с аксиомы: в каждой плоскости имеются точки. Из нее следует первый вариант взаимного расположения плоскости и точки – точка может принадлежать плоскости. Другими словами, плоскость может проходить через точку. Для обозначения принадлежности какой-либо точки какой-либо плоскости используют символ «». Например, если плоскость проходит через точку А , то можно кратко записать .

Следует понимать, что на заданной плоскости в пространстве имеется бесконечно много точек.

Следующая аксиома показывает, сколько точек в пространстве необходимо отметить, чтобы они определяли конкретную плоскость: через три точки, не лежащие на одной прямой, проходит плоскость, причем только одна. Если известны три точки, лежащие в плоскости, то плоскость можно обозначить тремя буквами, соответствующими этим точкам. Например, если плоскость проходит через точки А , В и С , то ее можно обозначить АВС .

Сформулируем еще одну аксиому, которая дает второй вариант взаимного расположения плоскости и точки: имеются по крайней мере четыре точки, не лежащие в одной плоскости. Итак, точка пространства может не принадлежать плоскости. Действительно, в силу предыдущей аксиомы через три точки пространства проходит плоскость, а четвертая точка может как лежать на этой плоскости, так и не лежать. При краткой записи используют символ «», который равносилен фразе «не принадлежит».

К примеру, если точка А не лежит в плоскости , то используют краткую запись .

Прямая и плоскость в пространстве.

Во-первых, прямая может лежать в плоскости. В этом случае, в плоскости лежат хотя бы две точки этой прямой. Это устанавливается аксиомой: если две точки прямой лежат в плоскости, то все точки этой прямой лежат в плоскости. Для краткой записи принадлежности некоторой прямой данной плоскости пользуются символом «». Например, запись означает, что прямая а лежит в плоскости .

Во-вторых, прямая может пересекать плоскость. При этом прямая и плоскость имеют одну единственную общую точку, которую называют точкой пересечения прямой и плоскости. При краткой записи пересечение обозначаю символом «». К примеру, запись означает, что прямая а пересекает плоскость в точке М . При пересечении плоскости некоторой прямой возникает понятие угла между прямой и плоскостью .

Отдельно стоит остановиться на прямой, которая пересекает плоскость и перпендикулярна любой прямой, лежащей в этой плоскости. Такую прямую называют перпендикулярной к плоскости. Для краткой записи перпендикулярности используют симовл «». Для более глубокого изучения материала можете обратиться к статье перпендикулярность прямой и плоскости .

Особую значимость при решении задач, связанных с плоскостью, имеет так называемый нормальный вектор плоскости . Нормальным вектором плоскости является любой ненулевой вектор, лежащий на прямой, перпендикулярной этой плоскости.

В-третьих, прямая может быть параллельна плоскости, то есть, не иметь в ней общих точек. При краткой записи параллельности используют символ «». Например, если прямая а параллельна плоскости , то можно записать . Рекомендуем подробнее изучить этот случай, обратившись к статье параллельность прямой и плоскости .

Следует сказать, что прямая, лежащая в плоскости, делит эту плоскость на две полуплоскости. Прямая в этом случае называется границей полуплоскостей. Любые две точки одной полуплоскости лежат по одну сторону от прямой, а две точки разных полуплоскостей лежат по разные стороны от граничной прямой.

Взаимное расположение плоскостей.

Две плоскости в пространстве могут совпадать. В этом случае они имеют, по крайней мере, три общие точки.

Две плоскости в пространстве могут пересекаться. Пересечением двух плоскостей является прямая линия, что устанавливается аксиомой: если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.

В этом случае возникает понятие угла между пересекающимися плоскостями . Отдельный интерес представляет случай, когда угол между плоскостями равен девяноста градусам. Такие плоскости называют перпендикулярными. О них мы поговорили в статье перпендикулярность плоскостей .

Наконец, две плоскости в пространстве могут быть параллельными, то есть, не иметь общих точек. Рекомендуем ознакомиться со статьей параллельность плоскостей , чтобы получить полное представление об этом варианте взаимного расположения плоскостей.

Способы задания плоскости.

Сейчас мы перечислим основные способы задания конкретной плоскости в пространстве.

Во-первых, плоскость можно задать, зафиксировав три не лежащие на одной прямой точки пространства. Этот способ основан на аксиоме: через любые три точки, не лежащие на одной прямой, проходит единственная плоскость.

Если в трехмерном пространстве зафиксирована и задана плоскость с помощью указания координат трех ее различных точек, не лежащих на одной прямой, то мы можем написать уравнение плоскости, проходящей через три заданные точки .

Два следующих способа задания плоскости являются следствием из предыдущего. Они основаны на следствиях из аксиомы о плоскости, проходящей через три точки:

  • через прямую и не лежащую на ней точку проходит плоскость, притом только одна (смотрите также статью уравнение плоскости, проходящей через прямую и точку);
  • через две пересекающиеся прямые проходит единственная плоскость (рекомендуем ознакомиться с материалом статьи уравнение плоскости, проходящей через две пересекающиеся прямые).

Четвертый способ задания плоскости в пространстве основан на определении параллельных прямых . Напомним, что две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются. Таким образом, указав две параллельные прямые в пространстве, мы определим единственную плоскость, в которой эти прямые лежат.

Если в трехмерном пространстве относительно прямоугольной системы координат задана плоскость указанным способом, то мы можем составить уравнение плоскости, проходящей через две параллельные прямые .


В курсе средней школы на уроках геометрии доказывается следующая теорема: через фиксированную точку пространства проходит единственная плоскость, перпендикулярная к данной прямой. Таким образом, мы можем задать плоскость, если укажем точку, через которую она проходит, и прямую, перпендикулярную к ней.

Если в трехмерном пространстве зафиксирована прямоугольная система координат и задана плоскость указанным способом, то можно составить уравнение плоскости, проходящей через заданную точку перпендикулярно к заданной прямой .

Вместо прямой, перпендикулярной к плоскости, можно указать один из нормальных векторов этой плоскости. В этом случае есть возможность написать

В силу аксиомы: две плоскости, имеющие общую точку, имеют общую прямую - возможны лишь два случая расположения плоскостей: 1) плоскости имеют общую прямую, т. е. пересекаются; 2) плоскости не имеют ни одной общей точки, такие плоскости называют параллельными. Существование параллельных плоскостей вытекает из следующего построения. Возьмем в плоскости (рис. 331) какие-либо две пересекающиеся прямые а и b.

Через точку М, не принадлежащую плоскости X, проведем прямые а и b, соответственно параллельные данным. Покажем, что плоскость содержащая эти прямые, параллельна плоскости . Действительно, если бы эти плоскости пересекались по некоторой прямой с, то эта прямая, принадлежа плоскости , пересекалась бы по крайней мере с одной из прямых а и такая точка пересечения была бы точкой пересечения одной из этих прямых с плоскостью . Между тем обе прямые по построению параллельны плоскости . Таким образом, предположение о пересечении плоскостей ведет к противоречию. Следовательно, плоскости параллельны. Отсюда следует

Признак параллельности плоскостей. Если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, то плоскости параллельны.

Плоскость, прямая, точка - основные понятия геометрии. Нам трудно дать им четкие определения, однако интуитивно мы понимаем, что это такое. Плоскость имеет только два измерения. У нее нет глубины. Прямая имеет лишь одно измерение, а у точки вообще нет размеров - ни длины, ни ширины, ни высоты.

Плоскость бесконечна. Поэтому в задачах мы рисуем только часть плоскости. Надо же как-то ее изобразить.

А как все это выглядит в пространстве? Очень просто. Лист плотной бумаги послужит «моделью» плоскости. Можете взять другой плоский предмет, например, CD-диск, пластиковую карту. Карандаши вполне могут изобразить прямые. Все аксиомы и теоремы стереометрии можно показать «на пальцах», то есть с помощью подручных материалов. Читаете - и сразу стройте такую «модель».

Две плоскости в пространстве либо параллельны, либо пересекаются. Примеры в окружающем пространстве найти легко.

Если две плоскости имеют общую точку, то они пересекаются по прямой.

Мы не рассматриваем отдельно случай «плоскости совпадают». Раз совпадают - значит, это одна плоскость, а не две.

Угол между плоскостями

Пусть плоскости и заданы соответственно уравнениями и . Требуется найти угол между этими плоскостями.

Плоскости, пересекаясь, образуют четыре двугранных угла (рис. 11.6): два тупых и два острых или четыре прямых, причем оба тупых угла равны между собой, и оба острых тоже равны между собой. Мы всегда будем искать острый угол. Для определения его величины возьмем точку на линии пересечения плоскостей и в этой точке в каждой из плоскостей проведем перпендикуляры и к линии пересечения. Нарисуем также нормальные векторы и плоскостей и с началами в точке (рис. 11.6).

Рис.11.6.Угол между плоскостями

Если через точку провести плоскость , перпендикулярную линии пересечения плоскостей и , то прямые и и изображения векторов и будут лежать в этой плоскости. Сделаем чертеж в плоскости (возможны два варианта: рис. 11.7 и 11.8).

Рис.11.7.Угол между нормальными векторами острый

Рис.11.8.Угол между нормальными векторами тупой

В одном варианте (рис. 11.7) и , следовательно, угол между нормальными векторами равен углу , являющемуся линейным углом острого двугранного угла между плоскостями и .

Во втором варианте (рис. 11.8) , а угол между нормальными векторами равен . Так как

то в обоих случаях .

По определению скалярного произведения . Откуда

и соответственно

Если плоскости параллельны, то коллинеарны их нормальные векторы. Получаем условие параллельности плоскостей

(11.6)

где -- любое число.

23.Различные виды уравнений прямой в пространстве Векторно-параметрическое уравнение прямой где - фиксированная точка, лежащая на прямой; - направляющий вектор. В координатах (параметрические уравнения): Уравнения прямой по двум точкам 24. Различные виды уравнений прямой в пространстве Канонические уравнения прямой Параметрические уравнения прямой получим, приравняв каждое из отношений (3.4) параметру t: x = x 1 + mt , y = y 1 + nt , z = z 1 + р t . 25. Взаимное положение прямых Две прямые в пространстве могут пересекаться, скрещиваться и могут быть параллельны. 1. Пересекающиеся прямые Пересекающимися прямыми называются такие прямые, которые имеют одну общую точку. Из инвариантного свойства 5 следует, что проекция точки пересечения проекций прямых а и b есть точка пересечения этих прямых (рис. 3.4). . Рис. 3.4. Пересекающиеся прямые 2. Параллельные прямые На рис. 3.5 изображены параллельные прямые – прямые, пересекающиеся в несобственной точке (прямые, лежащие в одной плоскости и пересекающиеся в бесконечно удаленной точке). Из инвариантного свойства 6 следует, что проекции параллельных прямых а и b параллельны. 3. Скрещивающиеся прямые Скрещивающиеся прямые – это прямые, не лежащие в одной плоскости, это прямые не имеющие ни одной общей точки. На комплексном чертеже (рис. 3.6) точки пересечения проекций этих прямых не лежат на одном перпендикуляре к оси Х (в отличие от пересекающихся прямых, см. рис. 3.4). . Рис. 3.5. Изображение параллельных прямых . Рис. 3.6. Скрещивающиеся прямые Расстояние от точки до прямой - равно длине перпендикуляра, опущенного из точки на прямую. Если прямая параллельна плоскости проекции (h | | П 1), то для того чтобы определить расстояние от точки А до прямой h необходимо опустить перпендикуляр из точки А на горизонталь h.
Расстояние между скрещивающимися прямыми (формулировка и пример)
Общим перпендикуляром двух скрещивающихся прямых называется отрезок, концы которого лежат на этих прямых, и он перпендикулярен каждой из этих прямых. Две скрещивающиеся прямые имеют общий перпендикуляр, и притом только один. Он является общим перпендикуляром параллельных плоскостей, каждая из которых проходит через одну прямую параллельно другой. На рис. 36 имеем две скрещивающиеся прямые a и b. Через каждую из них проведена плоскость (плоскость проходит через а, плоскость проходит через b), параллельная другой прямой. Отрезки параллельных прямых, заключенные между параллельных прямых, равны.

Взаимное расположение плоскостей в пространстве

При взаимном расположении двух плоскостей в пространстве возможен один из двух взаимно исключающих случаев.

1. Две плоскости имеют общую точку. Тогда по аксиоме пересечения двух плоскостей они имеют общую прямую. Аксиома R5 гласит: если две плоскости имеют общую точку, то пересечение этих плоскостей есть их общая прямая. Из этой аксиомы следует, что у плоскостей Такие плоскости называются пересекающимися.

Две плоскости не имеют общей точки.

3. Две плоскости совпадают

3. Векторы на плоскости и в пространстве

Вектор -- это направленный отрезок. Его длиной считают длину отрезка. Если даны две точки M1 (x1, y1, z1) и M2 (x2, y2, z2), то вектор

Если даны два вектора и то,

1. Длины векторов

2. Сумма векторов:

3. Суммой двух векторов a и b является диагональ параллелограмма, построенного на этих векторах, исходящая из общей точки их приложения (правило параллелограмма); или вектор, соединяющий начало первого вектора с концом последнего -- по правилу треугольника. Суммой трех векторов a, b, c называется диагональ параллелепипеда, построенного на этих векторах(правило параллелепипеда).

Рассмотрим:

  • 1. Начало координат -- в точке A;
  • 2. Сторона куба -- единичный отрезок.
  • 3. Ось ОХ направляем по ребру AB, ОY -- по ребру AD, а ось OZ -- по ребру AA1.

Для нижней плоскости куба

Вверх