Какая поверхность на марсе. Астрономия. Физические характеристики Марса

Черная бездна космоса притягивает смелого романтичного человека ХХI века также, как безбрежный океан в IX-XVIIII веках притягивал тогдашних романтиков и флибустьеров. Уже сделаны первые шаги в эту бездну, уже каждый житель Земли видел, как она выглядит из космоса, мы разглядели на Земле многое, что не видно с близкого расстояния. Кто-то скажет: "зачем лететь на Луну, на Марс, что нам это даст?" Такие антигерои рассуждают как кот из мультфильма: "Гаити, Гаити... Нас и здесь хорошо кормят". В познании Вселенной всегда присутствуют два вектора - прагматический и эвристический. В наш век возобладал прагматический вектор познания, отчего равновесие в сознании людей нарушилось и наша цивилизация пошла в "демократический" разнос. Но через 2-3 поколения людям надоест быть голыми прагматиками и всю жизнь гоняться за чистоганом. Тогда снова активизируется эвристическое начало в познании Вселенной и снова войдут в моду песни со словами: "Я верю друзья, караваны ракет помчат нас вперед от звезды до звезды"... Помчат не для того, чтобы доставить на Землю руду Х, необходимую для украшения апартаментов, а потому, что это интересно, потому, что это романтично. Эти корабли поведут в бездны космоса наши потомки, которые смогут обуздать свои потребности в материальном для того, чтобы удовлетворить растущие потребности в духовном.

В юности в начале 1960-х я, как многие мои сверстники, мечтал побывать в Космосе, побродить по Луне, по Марсу. Но уже тогда было ясно, что эта моя мечта не осуществится: специальность не ту выбрал, здоровье не позволит пройти комиссию, чтобы попасть в школу космонавтов. Однако мечта эта долго жила в глубине моего сознания. Прошло 40 лет и настало время, когда увидеть и Луну и Марс на фотографиях, побывать там виртуально может каждый желающий. Это стало возможно, когда появился интернет: стало доступно такое количество информации о планетах Солнечной системы, о Галактике, о дальнем Космосе, о чем мы в 60-е и мечтать-то не могли. Луноходы и марсоходы передали на Землю столь детальные фотографии, что создается ощущение присутствия в этих мирах, удаленных от Земли на сотни тысяч (Луна) и даже миллионы километров (Марс).

Но одно дело увидеть - и другое понять то, что ты видишь. Бывая в экспедициях на Земле, я много видел такого, что сразу понять не мог. Например, не мог понять почему слои земные, "пропечатанные" в горных породах, образовавшихся путем осаждения песка и ила в морях и океанах, в горах чаще всего залегают под углом к горизонту, а иногда вообще перпендикулярны земной поверхности. Или: почему в Арктике образуются полигоны, на которые растрескивается грунт в условиях многолетней мерзлоты?

Тем более трудно понять увиденное на детальных фотографиях поверхности Марса. И не только на фотографиях, можно даже походить по Марсу и не понять увиденного и услышанного. Человек смотрит глазами и слушает ушами, но видит и слышит умом. И я задался целью понять, что же запечатлено на марсианских фотографиях, которые в огромном количестве появляются в интернете благодаря NASA. О том, что из этого получилось, можно прочитать на нескольких интернет-страничках на этом сайте.

Никому не навязываю свои объяснения увиденного на Марсе, ни с кем не хочу спорить, но хочу вызывать эвристический интерес к соседней планете, по которой рано или поздно будут путешествовать не только земные роботы, но и живые люди.

Так выглядит планета Марс с расстояния 50 тыс. км. В отличие от Земли, на Марсе не видно морей и океанов, облачность здесь есть, но очень слабая в виде легкой белой вуали. На северном полюсе небольшая ледяная шапка. В экваториальной части обращенного к нам полушария имеется разлом, который называется Гранд Каньоном. Можно различить огромные кольцевые структуры - вулканы, разглядеть кратеры. Кратеров на Марсе заметно меньше, чем на Луне или Меркурии. Кроме Гранд Каньона можно различить несколько мелких разломов. Видны более темные и более светлые территории. Огромный рыжий шар висит в черной бездне Космоса.

Характеристики планеты Марс

Средняя удаленность планеты от Солнца

1,5237а.е. + 227940000 км

Эксцентриситет (вытянутость) орбиты

Наклон орбиты к плоскости эклиптики в градусах

Средняя орбитальная скорость (км/с)

Сидерический период обращения планеты (земных лет)

1,88089 (686,98 дней)

Синодический период (марсианских дней)

Масса по сравнению с Землей (Земля=1)

Масса в тоннах

642100000000000000000

Экваториальный радиус по сравнению с Землей

Экваториальный радиус в км

Средняя плотность (г/см 3)

Ускорение силы тяжести на экваторе (м/с 2)

Вторая космическая скорость на экваторе (км/с)

Сидерический период вращения (часов)

Наклонение экватора к орбите (градусы)

Число спутников

2 (Фобос и Деймос)

Состав и внутреннее строение

У Марса сейчас имеется слабое магнитное поле, сила которого составляет около 2% от магнитного поля Земли с противоположной земной полярностью. Из-за намагниченности горных пород в некоторых областях локальные магнитные поля выше основного. По-видимому, имеющее относительно низкую температуру (около 1300°К) и низкую плотность, ядро Марса богато железом и серой, отчего оно жидкое и имеет большую электропроводность. Радиус марсианского ядра порядка 800-1000 км, а масса - около одной десятой всей массы планеты. Частичное плавление мантийных силикатов сопровождается интенсивными вулканическими и тектоническими явлениями. На Марсе зарегистрированы марсотрясения.

Мантия Марса обогащена сернистым железом, заметные количества которого обнаружены и в исследованных поверхностных породах, тогда как содержание металлического железа заметно меньше, чем на других планетах Земной группы. Толщина литосферы Марса - несколько сотен км, толщина марсианской коры - примерно 100 км. Кора богата оливином и железистыми окислами, которые и придают планете ржавый цвет. В поверхностном слое содержится: кремния 21%, железа 12,7%, серы 3,1%.

Экваториальный радиус планеты равен 3394 км, полярный - 3376,4 км. Уровень поверхности в южном полушарии в среднем на 3-4 км выше, чем в северном. Между двумя половинами Марса имеется заметное различие в характере поверхности. Южная часть имеет поверхность, сильно изрытую кратерами. На севере доминирует менее богатая кратерами поверхность. Значительная часть поверхности Марса представляет собой более светлые участки, которые имеют красновато-оранжевую окраску; 25% поверхности - более темные участки серо-зеленого цвета, уровень которых ниже, чем светлых. Перепады высот весьма значительны и составляют в экваториальной области примерно 14-16 км, но имеются большие купола гор Фарсида и равнины Элизий. Самым большим вулканами являются Арсия (27 км) и Олимп (26 км) в возвышенной области Тараис в северном полушарии. Для сравнения щитовые вулканы Гавайских островов на Земле возвышаются над морским дном всего на 9 км. Активные вулканические пояса на Земле в течение геологического времени изменяли свое местоположение из-за постепенного движения континентальных плит, поэтому для "построения" очень высоких конусов вулканов, в отличие от Марса, на Земле не хватало времени. Кроме того, слабое тяготение позволяет изверженному веществу образовывать на Марсе намного более высокие структуры, которые не обрушиваются под собственной тяжестью. Вероятно способствует образованию высоких вулканических гор и быстрое остывание извергнутого вещества в холодной атмосфере Марса.

Разломы, ущелья с ветвящимися каньонами (некоторые из них имеют сотни километров в длину, десятки - в ширину и несколько километров в глубину) говорят о тектонической и вулканической активности Марса. Эти вулканические области расположены на восточном и западном концах огромной системы каньонов - долины Маринер, которая простирается на 5000 км вдоль экваториальной области и при ширине до 120 км имеет среднюю глубину 4-5 км. Вулканические конусы достигают огромных размеров: Арсия, Акреус, Павонис и Олимп - 500-600 км в основании. Диаметр кратера у Арсии - 100, а у Олимпа - 60 км (для сравнения - у величайшего на Земле вулкана Мауна-Лоа на Гавайских островах диаметр кратера всего 6,5 км).

Некоторые особенности рельефа Марса явно напоминают выглаженные ледниками участки. Судя по хорошей сохранности этих форм, не успевших ни разрушиться, ни покрыться последующими наслоениями, они имеют относительно недавнее происхождение. Есть все основания полагать, что воды на Марсе немало. Высказываются предположения, что вода существует и сейчас в виде мерзлоты (криолитозоны). При весьма низких температурах на поверхности (в среднем около 220° К в средних широтах и лишь150° К в полярных областях) на любой открытой поверхности воды быстро образуется толстая корка льда, которая, к тому же, через короткое время заносится пылью и песком. Летом температура на экваторе чуть выше 0°С, а на большей части поверхности средняя температура –23°С. Но благодаря низкой теплопроводимости льда под его толщей местами может оставаться и жидкая вода и, в частности, подледные потоки воды вероятно продолжают и теперь углублять русла некоторых подледных марсианских рек.

Телескопические исследования Марса еще в XIX веке позволили обнаружить сезонные изменения его белх полярных шапок, которые с наступлением осени начинают увеличиваться (в соответствующем полушарии), а весной таять, причем от полюсов на юг распространяются волны потепления. Еще 60 лет назад некоторыми учеными в России и за рубежом высказывалось предположение, что эти волны связаны с распространением растительности по поверхности Марса. Однако позднее полученные данные заставили отказаться от этой гипотезы, возможно, эти сезонные изменения связаны с переносами песка и пыли во время марсианских бурь. В южном полушарии Марса заметно суше, чем в северном, так как южный полюс почти на 6,5 км выше северного, и такой рельеф изменяет циркуляцию атмосферы в этой части планеты. Каждое лето происходит таяние полярных шапок Марса. Углекислый газ, из которого в основном состоит атмосфера Марса, с южного полюса скатывается к экватору, и оттуда направляется в сторону северного полюса, и там добавляется к тому водяному пару и углекислому газу, который есть над северной полярной шапкой. В результате получается, что полярная шапка на северном полюсе по размерам мощнее, чем на южном. Такая картина была получена при компьютерном моделировании атмосферных потоков на Марсе с учетом более высокого положения южного полюса. Если же в предложенную модель, заложить в качестве одного из условий одинаковые высоты для полюсов, то климат в обоих полушариях получится одинаковым.

Сейчас поверхность Марса - безводная пустыня, над которой свирепствуют пыльно-песчаные бури, вздымающие песок и пыль на высоту до десятков километров. Во время этих бурь скорость ветра достигает сотни метров в секунду. Последние исследования Марса "Mars Global Surveyor" и "Mars Odyssey" доказывают, что на глубине не более 5 м находится лед, а на большей глубине возможно и вода в жидком состоянии. Если растопить весь марсианский лед, то его поверхность, по мнению специалистов, покроется океаном глубиной 500 м.

Некоторые крупные области поверхности Марса

Гора Олимп (Olympus Mons) - считается самым большим вулканом Солнечной системы. Она возвышается на 27 км выше опорного уровня. Этот щитовой вулкан в поперечнике около 700 км, его объем в пятьдесят раз превышает самый большой земной вулкан. Кальдера имеет диаметр около 90 км, гора окружена откосом высотой по крайней мере 4 км. Более старые вулканические породы, сглаженные и разрушенные ветром, окружают главный пик, образуя область ореала. Гора Олимп расположена в северо-западной части гор Фарсида и ранее называлась "Олимпийские снега", поскольку постоянные облака над этой областью выглядели как светлое пятно.

Плато Солнца (Solis Planum) - древняя вулканическая равнина на Марсе, лежащая к югу от долины Маринер. При визуальном наблюдении внутри этой области видно изменяющееся темное пятно, благодаря чему вся структура получила популярное название "Марсианский глаз".

Равнина Амазония (Amazonis Planitia) - слабоокрашенная равнина в северной экваториальной области Марса. Породы здесь имеют возраст 10-100 млн. лет. Часть этих пород - застывшая вулканическая лава. Как таковых вулканов в виде гор с кратерами в центре этой равнины нет, а лава или вода изливалась здесь из трещин марсианской коры. На основании исследований этих многослойных структур, образовавшихся в результате повторяющихся извержений, можно сделать вывод о том, что, вполне возможно, вулканические процессы идут на Марсе и сейчас.

Земля Аравия - находится на километр ниже окрестных плоскогорий. Учёные полагают, что этот регион подвергался мощной эрозии. Эрозия на Земле Аравия была возможно была вызвана текущей водой.

Равнина Аргир (Argyre Planitia) - круглая впадина около 900 км в диаметре, расположенная в южном полушарии.

Равнина Аркадия (Arcadia Planitia) - равнина в северном полушарии.

Равнина Утопия (Utopia Planitia) - обширная равнина с небольшим количеством кратеров в северном полушарии, это место посадки АМС "Викинг-2". Панорамные изображения, переданные на Землю спускаемым аппаратом "Викинга", показали, что поверхность здесь усеяна множеством валунов, сложенных из слоистых пород.

Равнина Хриса (Chryse Planitia) - круглое плато в северной экваториальной области Марса. Место посадки зонда "Викинг-1".

Равнина Элизий (Elysium Planitia) - большая вулканическая равнина более 5000 км в поперечнике.

Равнина Эллада (Hellas Planitia) - впадина почти круглой формы диаметром 1800 км. Равнина Эллада, выделяется светлым цветом, раньше ее называли просто "Эллада".

Атмосфера

Разреженная марсианская атмосфера содержит 95,3% углекислоты, 2,7% молекулярного азота и 1,6% аргона, СО(0,06%), Н 2 О в сумме до 0,1%. Состав марсианской атмосферы существенно изменяется в течение года от сезона к сезону. Кислорода в атмосфере очень мало (следы). Атмосферное давление у поверхности составляет 0,7% давления у поверхности Земли. Сильные атмосферные ветры вызывают обширные пылевые бури, которые периодически охватывают всю планету, поднимая пыль на высоту до 20 км. На Марсе наблюдаются разнообразные формы облаков и тумана. Рано утром туман сгущается в долинах, а по мере того, как ветер поднимает охлаждающиеся воздушные массы на возвышенные плато, облака появляются и над высокими горами Фарсида. Зимой северная полярная шапка окутывается завесой ледяного тумана и пыли, называемой полярным капюшоном. Подобное явление в несколько меньшей степени наблюдается и на юге.

Полярные области покрыты тонким слоем льда, который, как полагают, является смесью водяного льда и твердой углекислоты. Изображения с высокой степенью разрешения показывают спиральные образования и страты нанесенного ветром вещества. Северная полярная область окружена рядами дюн. Полярные ледяные шапки увеличиваются и убывают в соответствии со сменой времен года. Марсианский год примерно вдвое длиннее земного, так что времена года здесь также более длинные. Однако из-за относительно высокого эксцентриситета орбиты Марса они имеют неравную продолжительность: лето в южном полушарии короче и теплее лета в северном. Имеется слабый озоновый слой на высоте 36-40 км толщиной 7км, который в 250 раз слабее земного.

Температура поверхности хорошо изучена по наземным наблюдениям в инфракрасных лучах. Температура верхнего слоя грунта во время летнего солнцестояния может подниматься до 0°C. Самая низкая температура была зарегистрирована над зимней полярной шапкой Марса –139°С. При такой температуре конденсируется углекислый газ. Для Марса характерен резкий перепад температур. В плато Солнца и земли Ноя температура изменяется в течение суток от –53 до +22°С летом и от –103 до –43°С зимой. Марс – весьма холодный мир, климат его намного суровее, чем климат в Антарктиде.

Марс долго рассматривался как планета, на которой вероятно существование жизни, что подкреплялось наблюдением полярных ледяных шапок и сезонных изменений. В 1859 г. А. Секкии и, особенно, в 1887 г. Д. Скипарелли (изучал Марс в год максимального сближения Земли и Марса) выдвинули сенсационную гипотезу, что Марс покрыт сетью рукотворных каналов, периодически наполняющихся водой. П. Лоуэлл и другиепосчитали, что они видят систему каналов, которые имеют искусственное происхождение.

Однако информация, полученная советскими АМС "Марсом-2" и "Марсоходом"-3 в 1971 г., а также "Марсом-5" в 1974 г. доказала, что никаких искусственных каналов на Марсе нет. Американские космические аппараты и марсоходы: "Маринер-4" в 1965 г., "Маринер-6" и -7" в 1969г, "Маринер-9" в 1971г, а также "Викинг-1" и "Викинг-2" в 1976г., "Марс Глобал Сервейор" в 2001г. и другие исследования, проведенные на марсе автоматическими аппаратами в последнее десятилетие предоставили огромную информацию о Марсе.

Спутники Марса

Фобос (Страх) . Внутренний спутник Марса. Делает оборот вокруг Марса за 7 ч. 39 мин., то есть обгоняет планету в ее суточном вращении. Изображения, полученные АМС "Викинг" в 1977г, показывают, что Фобос имеет эллипсоидальную форму и покрыт кратерами. Диаметр самого большого из них равен 10 км, что составляет больше трети размера спутника. Борозды, отходящие от Стикни, кажутся трещинами, вызванными ударным воздействием при образовании кратера. Спутник, постепенно приближаясь к планете, приблизительно через 100 млн. лет окажется в зоне Роша и будет разорван приливными силами.

Деймос (Ужас) . Деймос имеет форму эллипсоида с размерами облетает Марс по орбите за 30 ч. 17 мин. По поверхности спутника разбросаны глыбы размером от 10 до 30 м. Считается, что Деймос, как и Фобос, представляет собой астероид, захваченный планетой. Они оба имеют очень темную поверхность, отражая всего несколько процентов падающего на них света. Эти спутники подобны астероидам (углеродистой хондровой структуры), которые обычно находят во внешней части пояса астероидов и в группе астероидов, связанных с Юпитером. Оба спутника вcегда обращены к Марсу одной и той же стороной.

А так выглядит с расстояния 100 тыс. км Земля и Луна. Главные отличия Земли от Марса, которые бросаются в глаза при наблюдении этих планет из космоса, это - океаны и моря, отчего наша планета выглядит как голубой шар, в атмосфере Земли мощная облачность, покрывающая добрую половину планеты. На материках можно едва разглядеть зеленые пятна растительности. Луна - спутник Земли - значительно меньше Земли. На ней, как и на Марсе, нет морей и океанов, но на Луне, в отличие от Марса, нет атмосферы. Поэтому даже самые маленькие метеориты врезаются в ее поверхность. На Марсе малые метеориты сгорают, а на поверхность падают только крупные и средние. На Земле к поверхности прорываются только крупные, а мелкие и средние метеориты разрушаются в атмосфере, разогреваясь от трения о нее и разогрева. К тому же кислород земной атмосферы способствует быстрому окислению вещества метеоритов - их сгоранию.

Когда я смотрю на фотографию Земли из космоса, почему-то вспоминаю картину "Девочка на шаре"... оказывается все мы на шаре, только значительно большего размера, чем изобразил художник. И шар этот несется в черном пространстве по орбите вокруг Солнца, а вместе с Солнцем - вокруг центра Галактики, вместе с Галактикой летит из центра Матагалактики к ее периферии. Так что даже когда мы сидим или лежим, мы участвуем по крайней мере в четырех одновременных движениях: вокруг земной оси, вокруг Солнца, вокруг центра Галактики и прочь из центра Метагалактики.

"Открылась бездна звезд полна, звездам числа нет, бездне дна" - М.В. Ломоносов.

Мы на околомарсианской орбите. Большие пространства в полярной области планеты покрыты белой субстанцией. Это снег, но не такой, как на Земле. На марсе снег в основном состоит из замерзшего углекислого газа. Он при нагревании не превращается в жидкость, а сразу переходит в газообразное состояние - возгоняется. При возгонке углекислого снега его парциальное давление в атмосфере увеличивается, при этом усиливается парниковый эффект и температура днем может становиться положительной. При этом начинает таять водяной лед, который на Марсе тоже имеется. Но из-за низкого атмосферного давления водяной лед также не переходит в жидкую фазу, а превращается сразу в пар. Так происходит сухая возгонка водяного льда и водяного снега. Но к вечеру атмосфера выстывает и пары воды снова переходят в твердую фазу. Образуются легкие облака и на поверхность планеты ночью выпадает водяной снег в виде мелкой пороши или изморози. На дне депрессии и на сколоне горы южной экспозиции можно разглядеть какие-то темнозеленые пятна. Возможно, это колонии автотрофных микроорганизмов - бактериальные маты.

Так с орбиты выглядит Земля. Вершины Альпийских и Кавказских гор покрыты снегом и льдом. Хорошо видны темнозеленые массивы лесов и светложелтая поверхность пустынь и полупустынь. Можно разгядеть наиболее высокие горные цепи.

Марс с орбиты. Это Гранд Каньон. Это мощный тектонический разлом - разошедшаяся трещина в марсианской коре. На дне каньона видна гладкая субстанция, похожая на жидкость или лед. Сверху на дно каньона свалились обломки марсианской коры. Похоже, что они растворяются в "жидкой" субстанции, буквально вязнут в ней. Обрушение со стенок каньона должно быть весьма интенсивное, в этом случае, казалось бы, должны под такими склонами образоваться конуса выноса и прилавки из обломков, а их нет. Можно предположить, что на дне каньона водяное озеро. Каньон глубокий, около 4 км глубины, следовательно, давление атмосферы на дне этого каньона значительно болше, чем на плато. Кроме того, поток эндогенного тепла из недр Марса в разломе также больше, чем на плато. Озеро с поверхности наверняка замерзшее, но явно не до дна.

Планета Земля, северная часть Корякского нагорья на Северо-Востоке Азии. Осыпается крутой склон горы, но в отличие от Мраса, под склоном образуются конуса выноса и присклоновые прилавки из каменных обломков. Обломочный материал этих конусов пропитывается водой от дождей и тающего снега. В теле такого конуса появляется многолетняя мерзлота, лед заполняет промежутки между камнями. Нашпигованная льдом каменная осыпь превращается в так называемый каменный глетчер, который течет как настояший глетчер.

Планета Марс. Стенка Гранд Каньона. Тектонический разлом расширяется, происходит то, что на Земле происходит в рифтовых зонах - спрединг. Кора Марса (криолитозона) при этом начинает обрушаться, но она не осыпается, а проседает, так как плавится в глубине. В верхней части склона терраса образована чем-то вроде глетчера. А вот в нижней части склона, похоже, течет какая-то аморфная масса темно-фиолетового цвета. Эта масса находится на глубине 6-7 км от поверхности плато. Если верхнюю террасу можно принять за глетчер или каменный глетчер, то нижний темно-фиолетовый натек - что-то другое. Могу предположить, что это аморфные твердые углеводороды, что-то вроде густой битумизированной нефти. Возможно, что на границе мантии и коры на Марсе идет абиогенный синтез углеводородов.

Глетчер на Аляске. Два языка текущего льда выдавливаются с вершины хребта в долину, но не сливаются, а так и текут двумя потоками. По бокам и внизу оба глетчера разгружаются, это значит, что лед тает, а вытаявшие камни остаются и образуют морены - боковые и конечные.

А это фото Марса. Похоже, что здесь в этих кратерах на поверхность поступала жидкая вода из глубин планеты, но в холодной атмосфере планеты она моментально замерзала и формировала обширную наледь. Не удивлюсь, если в глубине этой наледи есть и жидкая вода. Процесс выделения на поверхность воды произошел недавно, наледь еще не покрылась пылью и песком. Наледь по сути является глетчером, только питание марсианского глетчера происходит не сверху за счет снега, а снизу за счет поступающей из глубин жидкой воды.

А этот ледяной бугор - гидролоккалит - образовался на Земле. Река в этом месте промерзла до дна, но вода из верховьев все поступает и поступает. Она здесь разрывает лед и выходит на поверхность, наращивая наледь сверху. Но в некоторых местах воды снизу поступает немного и она успевает замерзнуть не выходя на поверхность, вспучивая лед и наращивая вспучивание снизу, прямо как на Марсе. Образовалась серия трещин в наледи от давящей снизу воды. По этим трещинам вода стала поступать вверх к поверхности, сразу же замерзая, не выходя на поверхность. Этот бугор нарастает снизу. Такие бугры иногда достигают высоты 5-6 м и 10-15 м в диаметре. Гидролокалиты (в Якутии их называют болгуньяхи) часто образуются на севере Сибири и в горах Южной Сибири в районах с резко континентальным климатом.

Марс. На этом фото видно, как течет марсианский ледник. В верхней узкой части скорость течения его высокая, - здесь отчетливо видны продольные борозды на его поверхности. Так текут ледники и на Земле. Но внизу ледник широко растекается, скорость течение его замедляется и начинается испарение воды с поверхности, при этом в условиях низкого атмосферного давления вода сразу переходит в парообразное состояниеее. При этом на поверхности ледника формируется ячеистая структура. Масса льда на поверхности здесь загрязнена пылью и песком. Если на Земле ледники питаются за счет снега, выпадающего на их поверхность из облаков, а также сдуваемого ветрами с высоких плато. то на Марсе за счет осадков ледник вряд ли сможет нарастать. Осадков на Марсе выпадает очень мало. Так откуда же берется эта вода? Думаю, что вода поступает из глубин планеты. Этим Марсианские ледники в принципе отличаются от Земных.

Земля. На этом фото хорошо видно, что ледники на Земле образуются за счет снега, который выпадает зимой на вершины гор. Скапливаясь в ущельях и карах, этот снег уплотняется и становится фирном, а фирн превращается в лед. Языки льда выдавливаются из каров и текут по долинам рек и разломам в нижние пояса гор, постепенно истончаясь они превращаются в потоки воды, нитающей горные реки. Испарение с поверхности ледника в земных условиях происходит, но оно в земной атмосфере по сравнению с превращением льда в воду незначительно. На Марсе ледники просто испаряются.

Марс. Этот кратер образовался в результате "пропаривания" криолитозоны потоком эндогенного тепла. В образовавшейся огромной яме за счет воды, поступающей из глубин планеты, образовался глетчер. Течь этому глетчеру некуда, он на "стационаре". Но испарение льда с его поверхности происходит, и это создает причудливую "ямчатую"скульптуру на поверхности ледника. По всей вероятности, этот ледник в яме имеет выпуклую поверхность, эндогенная жидкая вода поступает по трещинам в леднике и сеть этих трещин имеет регулярную структуру. На поверхности глетчера этим трещинам соответствуют "ребра" этой скульптуры.

Камчатка. В этом каре на высоте 3000 м н.у.м. снег не тает даже летом. Он превращается в фирн, затем в глетчерный лед и питает ледник. Но ледник здесь маломощный, сверху он покрыт толстым слоем камней, сорвавшихся со стенок кара. Ледник течет и тащит камни вниз. Возможно, и на Земле есть глетчеры, расположенные в замкнутых цирках, которые никуда не текут. Но такие глетчеры на Земле будут обильно нашпигованы обломочным материалом.

Марс. Ровное почти идеально плоское плато разорвано глубоким разломом. На дне разлома видна плоская и гладкая поверхность. Такое впечатление, что это озеро, покрытое толстым слоем льда, возможно, озеро промерзшее до дна. А вот конус справа - это явно гидролакколит. Жидкая вода поступает по трешине-жерлу в центре конуса, выливается на его поверхность и сразу замерзает. Возможно, на поверхность жидкая вода и не поступает, а замерзает внутри бугра. Ребра бугра маркируют трещины во льду.

Камчатка. В разломах на Земле тоже образуются озера, часто они подпружены конечными моренами деградировавших ледников, которые в более холодную и снежную эпоху заполняли кары. Ледники стаяли, а озера образовались. Иногда на дне таких озер еще сохраняется часть карового ледника, засыпанная обломками. Этот реликтовый лед тает и дно озера опускается, озеро становится более глубоким. Но на Земле, в отличие от Марса, все каровые озера летом вскрываются от льда.

Земля из космоса с околоземной орбиты. Мегарельеф Земли принципиально отличается от мегарельефа Марса, на Марсе он более спокойный, плавный. Там нет таких рельефных гор, хотя превышеня рельефа на Марсе даже больше, чем на Земле. На Земле дно океанских впадин на глубине 11 км, а гора Джомолунгма высотой 8 км н.у.м., относительное превышение 19 км. На марсе относительное превышение наиболее высокой горы Олимп над самой глубокой впадиной около 40 км. Такое различие скорее всего связано с меньшей силой тяжести на Марсе, чем на Земле, но не только с этим. См. объяснение выше.

Поверхность Марса - это большей частью ровное или ступенчатое плато с пологими увалами. Крутые склоны здесь только на стенках тектонических разловом или круглых впадин - ям.

Тектонический разлом на Марсе. Похоже, что это зона срединга, или раздвижения марсианской коры. Разумеется, спрединг не столь масштабен, как на Земле - из-за того, что Марс значительно меньше Земли. Мне представляется этот процесс на Марсе так: в разлом из глубин поступила некая жидкая субстанция, возможно, вода, которая замерзла и превратилась тут же в лед. Испарение с поверхности льда создало структуру в виде системы многоугольников. Со временем пыльные бури покроют поверхность этого ледника в разломе пылью и песком, и разлом станет незаметен, он сольется с поверхностью окружающего плато.

Марс. Дно Гранд Каньона в самой его глубокой части. Такие формы рельефа на Земле не встречаются. Ледник здесь активно разрушается, в основном испаряясь с поверхности. Испарение идет неравномерно, образуются террасы, ребра, отделяющие друг от друга ямы и канавы. Но здесь, в глубоком каньоне, не вся вода с поверхности тающего ледника сразу испаряется. Малая ее часть переходит в жидкую фазу и стекает вниз по склону, образуя в углублениях на террасах и на дне каньона озерки. Озерки с поверхности покрываются слоем льда, под которым находится жидкая вода. Но мелкие озерки промерзают до дна, на фотографии они белого цвета (под ними нет жидкой воды).

Земля. Полигональная тундра в высокой Арктике. В центре бугор гидролокалит, который сформировался благодаря источнику подземных вод, который выходит на поверхность в центре бугра. Бугор сформирован за счет ледяной линзы, сформировавшейся при замерзании воды подземного источника. Вокрун гидролокалита сырая полигональная тундра. Криолитозона здесь расколота на многоугольники глубокими трещинами. Летом в этих трещинах скапливается вода, которая зимой замерзает и приподнимает края трещины, так как вода при замерзании расширяется.

На схеме справа показан механизм образования полигонов в тундре. Под трещинами формируются жилы льда из затекающей сюда осенью воды. Вода при замерзании расширяется и приподнимает окружающий грунт и торф, формируя валик. Зимой валики выше, чем летом, так как ледяная линза вытаивает и обьем трещины уменьшается. Ледяные линзы уходят в толщу многолетней мерзлоты.

Тектонический разлом на Земле. В режиме расширения планеты края этой трещины будут расходиться (спрединг), а из лубины планеты (из мантии) в трещину будет поступать расплавленная магма. Возможно и на Марсе такие процессы происходят. Там разогретое вещество мантии расплавляет криолитозону и мы видим оплывы на склонах и провалы (ямины или псевдократеры) на поверхности плато.

А вот это оригинальное образование в виде детской пирамидки находится на поверхности Марса посреди ровного плато. Объяснить происхождение такой пирамидки можно только действием водяного вулкана. Жидкая вода по жерлу, пропаренному в толще криолитозоны, поступает на поверхность и замерзает. Напор воды усиливается и пирамидка растет. Вообще-то это не что иное как марсианский гидролокалит. В конце концов этот гидролокалит вырастет до таких размеров, что начнется его разрушение, на месте бугра образуется глубокая яма - кратер.

Это тоже Марс. Похоже, что верхний слой криолитозоны на Марсе в основном состоит из минеральных частиц, нанесенных во время пыльных бурь. Это довольно твердая корка из сцементированных частиц пыли и песка. Но под этой коркой с глубиной содержание воды в твердой фазе в криолитозоне увеличивается, а на глубине в несколько десятков или сотен метров, возможны полости с водой, которая находится в жидком состоянии благодаря эндогенному теплу планеты. Корка на плато часто расколота на полигоны, так как обьем планеты не постоянен и сеть трещин позволяет Марсу слегка пульсировать. По поверхности корки ветер гоняет пыль и песчинки, которые образуют марсианские дюны.

Полигональная поверхность Арктической пустыни поражает регулярностью своего рисунка. Всякий, кто бывал в Арктике, удивлялся этой регулярности. Размер многоугольников зависит от характера грунта, степени его насыщенности водой. Система таких многоугольников, на которые поколота криолитозона в тундре облегчает ее растяжение при замерзании воды зимой и сжатие при ее таянии летом. Система многоугольников в тундре образуется в соответствии с принципом Ле-Шателье как результат самоорганизации геосистемы.

Гидролокалит в лесотундре: 1 - слой ежегодно оттаивающего почвогрунта; 2 - ледяная линза многолетнего льда; 3 - глубинные каналы, по которым глубинная вода поступает к ледяной линзе и питает ее, при этом бугор растет, что видно по наклонившимся деревьям..

Порой мерзлотные бугры образуются на вершине возвышенностей. Как же туда наверх поступает вода, питающая ледяную линзу? Вода скапливается в водоносном горизонте зажатая снизу слоем вечной мерзлоты а сверху слоем образующейся осенью сезонной мерзлоты. Грунт промерзает все глубже и давление в сужающемся водоносном горизонте увеличивается, в результате вода поднимается наверх холма к бугру-гидролокалиту, где может по трещинам вытекать наружу. При этом давление в водоносном горизонте падает. Но мороз делает свое дело, и водоносный горизонт сужается еще больше, выжимая воду к гидролокалиту.

Земля, отчетливо видны трещины грунта в тундре, связанные с криогенными процессами. Гидролокалит образовался на месте выхода подземной воды. Похоже, что гидролокалит находится в активном состоянии - линза льда в его теле постепенно увеличивается. Рядом формируются новые гидролокалиты.

Земля. Разрушающийся гидролокалит в тундре. Хорошо видна ледяная линза внутри бугра. Слой почвы над ледяной линзой очень тонкий. Гидролокалиты весьма "чувствительны" к глобальному потеплению. При потеплении они начинают деградировать и довольно быстро исчезают, при этом на месте деградировавшего гидролокалита часто образуется углубление (иногда небольшое озерко). Если озерка не образуется, то возникает болотце - сырой полигон. При этом растительность, которая сформировалась на вершине бугра, окажется в условиях избыточного увлажнения и будет быстро изменяться. Кустарничковая тундра деградирует, и на ее месте возникнет осоковое гпновое или сфагновое болото. Кто бывал в окрестностях Якутска, мог наблюдать множество небольших озер, возникших в голоцене на месте огромных бугров-гидролокалитов, образовавшихся здесь в ледниковый период.

Марс. Стенка Гранд Каньона. На фотографии отчетливо видно провальное обрушение (проседание) криолитозоны. Оседающий участок криолитозоны постепенно погружается в марсианскую кору и, вероятно, плавится в ней. Немного дальше от края криолитозона также погружается в марсианскую кору, буквально "пропаривается" потоком эндогенного тепла, в результате чего образуется своеобразный кратер. Примерно так погружаются на Земле в океан огромные глыбы льда, отрывающиеся от ледников Гренландии и Антарктиды. На дне марсианского Гранд Каньона, по-видимому, подо льдом существует огромное озеро жидкой воды. Это озеро сверху покрыто толстым слоем льда, который и предохраняет жидкую воду от быстрого испарения в условиях разреженной атмосферы Марса. Ведь на Марсе вода закипает при +2°С на плато и примерно при +4°С в глубоком каньоне. Да, на Марсе кипит холодная вода.

Марс. На этой фотографии начало Гранд Каньона. Этот "овраг" глубиной 2-3 км не промыт текущей водой, это очевидно. Следовательно, это действительно тектонический разлом. На его дне еще не успело образоваться озеро. Судя по сглаженным формам рельефа, поверхность Марса в данном месте - это мощный ледник, перекрытый сверху минеральной коркой, которая предохраняет ледник от испарения - сухой возгонки. Об этом говорит малое количество паров воды в атмосфере Марса. Попав в холодную атмосферу, водяной пар моментально превращается в кристаллики льда и выпадает на поверхность планеты мелкой снежной пылью.

Марс. Ступенчатый мегарельеф - следствие криогенных процессов и пыльных бурь. Над средней террасой видна легкая дымка. По всей вероятности, это конденсируется в кристаллики льда холодный водяной пар, выделяющийся здесь из разлома. По разлому эндогенное тепло достигает криолитозоны и "пропаривает" ее. Круглые кратеры - это не что иное как провалы в криолитозоне, на дне некоторых из них можно разглядеть ямные ледники. Следов текущей воды нет.

Ледяные слои в полярном каньоне, отснятые со спутника Mars Reconnaissance Orbiter (фото NASA/JPL-Caltech/Univ. of Arizona).

На этой фотографии видно, что в верхних слоях марсианской криолитозоны льда совсем нет. По всей вероятности, он весь испарился. Отчетливо видна слоистая структура грунта, который весьма похож на конгломерат, состоящий из минеральных частиц, сцементированных солями. Думаю, что слоистость марсианского грунта - это результат регулярно повторяющихся пыльно-песчаных бурь, а не результат отложения ила и песка на дне водоемов, как это происходит на Земле. Пылью на Марсе засыпает ледники, в составе пыльных облаков переносятся и пары воды, которые, замерзнув, в виде снега смешиваются с пылью и песком и выпадают на поверхность плато, цементируя минеральные частицы.

Нижние слои, вероятно, содержат воду как в виде льда, так и в виде гидратов. Возможно, в нижних слоях криосферы присутствуют углеводороды, а также сера, которая с железом образует сернистое железо, имеющее черный цвет.

Земля. Гималаи, вид из космоса с околоземной орбиты. Это так непохоже на Марс. Острые пики гор, бесчисленные горные хребты, глубокие разломы, по дну которых текут глетчеры. При таянии ледников вода не испаряется, а течет по дну разломов. Если на Марсе главенствует ветровая эрозия, то на Земле - водная и ледниковая. Обратите внимание на то, что горные хребты на этом фото почти параллельны друг другу. Как образовался такой мегарельеф? Это смятая в складки относительно тонкая кора дна океана Тетис, который 200 млн. лет назад плескался на этом месте, но потом при очередном сжатии планеты океаническая тонкая кора на дне Тетиса была смята в крутые складки. Период сжатия сменился периодом расширения Земли, но горные цепи Гималаев так и остались частью суши, а новый океан (Атлантический) образовался на месте нового разлома земной коры и постепенного спрединга в течение 100 млн. лет.

Земля. Вид с околоземной орбиты. А вот этот мегарельеф образовался в режиме растяжения земной коры при увеличении объема ее ядра и мантии. Относительно ровная (пенепленизированная) равнина подверглась воздействию тектонических процессов, разорвавших ее во многих местах. Образовавшиеся при этом разломы подверглись действию текучих вод. Этот тип рельефа больше похож на марсианский.

Марсианское озеро, покрытое толстым слоем льда, возможно промерзшее почти до дна. Вероятно, под этим озером поток эндогенного тепла выше, чем за его пределами. В пределах озера видны несколько кратеров. Похоже, что в этих местах толстый слой льда пропарили потоки эндогенного тепла, образовались вертикальные каналы, по которым и происходит разгрузка эндогенного тепла в виде выхода на поверхность жидкой воды, которая сразу же переходит в парообразное состояние так, что никакой жидкой воды на поверхности здесь не образуется. Несколько тектонических трещин под углом пересекают это озеро.

Поверхность Марса крупным планом. Здесь мы видим минеральный грунт. Не вся поверхность марса покрыта захороненным ледником. Здесь есть выходы горных пород - настоящие горы, которые возвышаются над погребенными ледниками Марса. Эти камни вряд ли могут переносить марсианские бури. Хотя поверхность каменных глыб неплохо обработана пыльными бурями, все грани камней сглажены. На земле такую работу осуществляют текущие воды и волны в зоне прибоя.

Вулканические породы также встречаются на Марсе. Эти камни - осколки вулканической лавы. Следовательно, на Марсе есть и настоящие вулканы, которые, извергаясь, могут выбрасывать не только газы, водяной пар, но и вулканические бомбы, а также изливать потоки каменной лавы. Следовательно, эндогенного тепла на Марсе вполне достаточно, чтобы растопить водяной лед в глубине его криолитозоны.

Поверхность Марса. Здесь недавно проехал марсоход и нарушил поверхностный слой рыхлых отложений пыли, песка и снега (по всей вероятности, снега из углекислоты). На поверхности углекислый снег растаял и испарился, а вот в грунте он может долго сохраняться. Кстати, это может быть смесь водяного и углекислого снега. Во время пыльной бури песок, пыль и снег поднимаются в атмосферу и переносятся на большие расстояния.

Земля. Арктика. Пдземный лед хорошо виден на обрыве размываемого берега. Арктические равнины почти на 50% состоят из льда. Если этот лед растает, то уровень равнины понизится и она окажется ниже уровня моря. Подземный лед на таких равнинах может быть реликтовым, он сформировался в конце плейстоцена в ледниковый период на шельфе. Шельфовый ледник сверху перекрыли отложения пыли и песка, принесенного на ледяную равнину с соседних гор ветрами и текущими водами. В голоцене, в том числе и в настоящее время подземные линзы льда вытаивают и на равнине образуются термокарстовые озера, иногда такая равнина в результате вытаивания ледяных линз "уходит" под воду и снова становится дном мелководного моря - его шельфом. Есть даже теория советского ученого Томирдиаро, согласно которой суша, соединявшая в ледниковый период Чукотку и Аляску (Берингия), была захороненным шельфовым ледником. Когда ледник растаял, Берингия погрузилась в морскую пучину.

Земля. Северная часть пустыни Гоби в центре Азиатского материка. Горный массив Бага-Газарын-Чулу, горы обработаны (буквально источены) песчаными бурями. Это - крупнозернистые слоистые гранито-гнейсы. Когда-то они были песчаными осадками на дне палеозойского моря. Но затем осадки подверглись сильной термической переработке, частичному оплавлению и превратились в слоистую горную породу. Затем произошло воздымание суши в этом месте, и граниты "вышли" на дневную поверхность. Массив раскололся и образовались горы, которые разрушаясь превращаются в песок. Песок ветрами уносится на юг пустыни Гоби.

Экспедиция в горах Бага-Газарын-Чулу (Гоби). Гранитные скалы постепенно разрушаются в основном под воздействием эоловых процессов. Сильный ветер поднимает частицы песка и с огромной скоростью несет их на сотни километров. Песчаные частицы ударяют о скалы и разрушают их.

Земля, пустыня Гоби, горы Бага-Газарын-Чулу. Внешне это очень похоже на Марс. Там тоже большие пространства заняты похожим плитняком. Только там, в отличие от Земли, породы, из которых при разрушении образуются вот такие плиты, образовалиь не в море путем отложения песчаных частиц, а на суше в результате отложения частиц, переносимых песчаными бурями. Наверняка марсианский плитняк не так прочен, как этот из пустыни Гоби. Этот образовался в результате термической обработки морских отложений, а марсианский, скорее всего, - в результате цементации эоловых отложений.

Земля, южная часть пустыни Гоби, пески Хангарын-Элс. Песок из северной части Гоби пыльными бурями переносится сюда и питает вот эти огромные дюны высотой до 300 м. Изредка выпадающие на дюны дожди быстро поглощаются песками и накапливаются в их толще. Именно эта вода из толщи дюны питает растительность. Вдоль гряды песчаных дюн Хангарин Элс течет речка, которую питают воды из толщи дюн. Речка мелкая, вода в ней днем солнцем нагревается до +50°С.

Дюны на Марсе. Похоже, что в толще этих марсианских дюн преобладает углекислый снег, а не частицы песка и пыли. Что же там происходит во время песчаных бурь? Когда на полюсе Марса начинается зима, то температура там опускается ниже точки замерзания углекислого газа. Атмосфера Марса в основном состоит из углекислого газа, и вот зимой он начинает здесь выпадать углекислым снегом, при этом атмосферное давление падает, и углекислый газ из южных частей планеты устремляется в зону очень низкого давления к зимнему полюсу. Поскольку 96% атмосферы Марса - это углекислый газ, то по сути, полярная зона здесь зимой действует как вакуумный насос. Вся атмосфера приходит в бешеное движение и устремляется к холодному полюсу планеты. Это движение увлекает пыль, песок, небольшие камни, кусочки водяного льда.

Весной солнце нагревает марсианскую полярную шапку, углекислый снег испаряется, и атмосферное давление на полюсе летом быстро нарастает. Ветры в это время дуют в сторону экватора. В это время парниковый эффект, который обеспечивает углекислый газ в атмосфере, еще больше разогревает атмосферу, она еще больше разогревается, вероятно в пригрунтовом слое днем до +20°С, но ночью охлаждается до -80°С.

Что такое черные образования, похожие на деревья, - загадка. Позже я попытаюсь ее объяснить.

Загадочные шарики на Марсе - не что иное, как кусочки водяного льда, окатанные пыльными бурями. Думаю, что во время пыльных бурь кусочки водяного льда с бешенной скоростью летят в атмосфере, катятся по поверхности, шлифуются, приобретая форму шариков. Можно сказать, что это марсианские долгоживущие градины "многократного пользования"

Марс. Бровка берега впадины, в которой под толстым слоем криолитозоны, возможно, есть жидкая вода. Странные голубые камни, вероятно, состоят из водяного льда или из породы, в составе которой много воды. Я не встречал горную породу на Земле, которая, раскалываясь, образовывала бы такие обломки со столь гладкими раковистыми поверхностями.

Поверхность песчаной дюны на Земле. Такая зыбь на поверхности образуется под воздействием ветра, который увлекает песчинки и переносит их. Но такая неровная поверхность тормозит движение песчинок, они то и дело попадают в канавки и барьерчики и тормозят свое движение. Так срабатывает принцип Ле-Шателье: если на систему воздействует некий фактор, то в системе происходят такие изменения, которые тормозят действие этого фактора. Принцип Ле-Шателье - это не что иное как разновидность проявления инерции. Всякое действие вызывает противодействие. В данном случае движение песчинок, взаимодействуя с поверхностью дюны, формирует такую поверхность дюны, которая тормозит движение этих песчинок.

Земля. Поверхность крупнозернистого гранито-гнейса в горах Бага-Газарын-Чулу в пустыне Гоби, подвергающегося эрозии под воздействием эоловых процессов и резких прерпадов температуры и неравномерного нагревания и остывания. Эта горная порода очень прочная, разрушение ее идет очень медленно. Но Природе некуда спешить, и камень в конце концов распадается на песчинки и камушки, из которых он когда-то и был образован.

Марс. Ледяной шарик на ледяной поверхности. По всей вероятности, это не чисто водяной лед, а смесь водяного льда и льда из углекислоты. Кроме того, шарик включает в себя значительное количество песчинок. Такие шарики, принесенные зимой в район зимнего полюса, могут вмораживаться здесь в ледяную толщу, но с наступлением весны они вытаивают и освобождаются из "плена". Новые песчаные бури подхватывают их и переносят с севера на юг, и так ежегодно дважды в год - осенью на к полюсу, весной к экватору - шарики катаются по поверхности планеты.

Типичный марсианский провальный кратер. Отчетливо видно, что такая яма могла образоваться только в результате пропаривания криолитозоны потоком эндогенного тепла. Но почему дно и стенки ямы такие черные? Похоже, что черную субстанцию выбрасывало со дна ямы вверх. По всей вероятности, на дне ямы или под этим дном находится резервуар с нефтью. Криолитозона в этом месте проваливается в полость, заполненную углеводородами. Чтобы принять эту гипотезу, придется признать возможность абиогенного синтеза нефти в мантии Марса на границе с его корой. В верхнем левом углу на фотографии видны следы фонтанов нефти, достигавшие поверхности плато.

Марс. На дне разлома мы видим озеро, не покрытое льдом. Это очень странно. При низком атмосферном давлении вода в жидком виде накапливаться и сохраняться в таких количествах на Марсе не может, она моментально закипит и испарится. Следовательно, перед нами озеро нефти, или очень на нее похожей субстанции. Похоже, что нефти на Марсе не меньше, чем в Кувейте. Вот только кислорода практически нет, гореть здесь нефть и нефтепродукты не могут.

Марс. Нефти здесь, по всей вероятности, действительно много, раз она выбрасывается даже на поверхность планеты. Время от времени давление в нефтяных резервуарах под толстым слоем криолитозоны резко возрастает и нефть фонтанами выбрасывается по трещинам на поверхность планеты.

Однако и на Земле жидкие и газообразные углеводороды постоянно поступают в гидросферу и атмосферу естественным путем по трещинам в земной коре. Многие, наверное, наблюдали нефтяные красивые пятна-разводья на поверхности луж на болотах, где никакие машины и трактора никогда не проезжали.

На фотографии слева видна часть Мексиканского залива. Здесь на дне моря видна какая-то черная субстанция. Это не что иное как углеводороды, поступающие по разломам из глубины Земли. Это не жидкая, а битумизированная твердая углеводородная масса.

В Мексиканском заливе добывают с платформ много нефти. Недавно там произошла авария и случился разлив большого ее количества, отчего пострадали здешние морские экосистемы и пляжи. Но выбросы углеводородов на поверхность Земли происходят и естественным путем; в биосфере есть микроорганизмы, для которых нефть - это питательный субстрат. Но естественным путем таких количеств нефти на поверхность обычно не поступает, и нескоро нефть поедающие микроорганизмы попадут в зону загрязнения и размножатся здесь в количествах, достаточных, чтобы съесть миллионы баррелей нефти в короткий срок. Следовательно, нефтяные компании обязаны разводить нефть поедающие организмы на специальных фабриках с тем, чтобы во время разливов нефти заносить в них эти микроорганизмы, и тем способствовать быстрому устранению нефтяного загрязнения.

Набор из двух изображений показывает один и тот же участок поверхности Марса, но в разные временные периоды. Черно-белое изображение датировано 24 февраля 2002, а цветное получено 13 марта 2006 гг. Видно, что на чистой поверхности (2002 г.) в 2006 г. образовался фонтан, выбрасывающий темнокоричневую субстанцию. Хорошо видно "отверстие", из которого эта субстанция вылетает.

Таким образом, Марс стал вторым объектом в Солнечной системе за пределами Земли, на котором обнаружены гейзеры. Первым был спутник Сатурна Энцелад. Вулканическая деятельность наблюдается также на спутнике Юпитера Ио. Вполне возможно, что вулканы и гейзеры на планетах солнечной системы и спутниках этих планет совсем не редкость, а обычное явление.

«Исследования американской автоматической станции «Mars Odyssey» подтверждают предположения о том, что на Марсе, возможно, закончился очередной "ледниковый период". К такому заключению пришел Уильям Фелдман из Лос-Аламосской лаборатории. В некоторых районах вода уже испарилась. В других процесс идет медленнее и еще не достиг точки равновесия. Эти районы подобны небольшим участкам снега, сохранившимся в защищенных местах спустя долгое время после окончания зимы. Замерзшая вода составляет до 10% верхнего метрового слоя грунта в экваториальных районах. Сохранившийся лед может скрываться под слоями пыли». (space.com/, 16 декабря 2003 года, 15:43). http://science.compulenta.ru/44002/

На Марсе впервые была зафиксирована сейсмическая активность. По словам Майкла Майера, новые снимки планеты свидетельствуют о том, что крупные камни изменили свое местоположение на поверхности Марса за последние несколько лет, скатившись в низину. Наблюдения, проводившиеся с 1999 по 2005 годы свидетельствуют о том, что марсианский климат стал теплее и продолжает теплеть до сих пор. Однако объяснения этому явлению ученые пока найти не могут». (По материалам Reuters (reuters.com) 21.09.2005, 09:22). http://www.podrobnosti.ua/technologies/space/2005/... По моему, скорее всего, решающую роль в потеплении на Марсе играет усилившийся поток эндогенного тепла, а не солнечного излучения. Однако и поток солнечного излучения в XX веке также увеличился - такого не наблюдалось в течение как минимум 600 лет. Вековое усиление светимости Солнца, как считают российские ученые, достигло максимума в 1990-х годах. Хотя сейчас солнечная светимость уже вступила в убывающую фазу векового цикла, но термальная инерция Земли еще обуславливает то глобальное потепление, которое мы наблюдаем в последние годы.

Как считает Александр Михайлович Портнов: «Грандиозные оползни, сфотографированные на многокилометровых отвесных склонах ущелья Маринер, свидетельствуют о наличии мощной толщи рыхлых красноцветных песков, сцементированных льдом вечной мерзлоты. Поэтому нынешнее «открытие следов воды» на Марсе никак нельзя выдавать за сенсацию. Однако американцы, как фантасты прошлого века, речные долины называют «каналами»; следы воды «сенсационно нашли» только сейчас, а об оттаивании вечной мерзлоты на Марсе и о сходстве этого явления с современным потеплением на Земле, начавшимся 12 тысяч лет назад, вообще молчат». ("НГ - Наука" 14 апреля 2004 года. Адрес доступа: http://www.ng.ru/science/2004-04-14/13_mars.html)

В начале 2007 года в СМИ было впервые открыто заявлено о взаимосвязи глобальных потеплений на Земле и на Марсе, что естественно, исключает техногенные причины возникновения этих явлений. Причем также впервые указано начало процессов на Марсе - 1999 год. Интересно, что в 2001 году президент США отдал распоряжение отозвать подпись США под Киотским протоколом, а официальные лица Белого дома стали отрицать причастность промышленных выбросов к глобальному потеплению на Земле. Никакого обоснования тогда опубликовано не было. Возможно? тогда американцы догадались о том, что главная причина глобального потепления на Земле - не антропогенная, ведь на Марсе никакой техносферы нет.

Заканчивая эту статью о Марсе, хочу высказать еще одно предположение, на сей раз о происхождении его спутников - Фобоса и Деймоса. Большинство исследователей считают, что свои спутники Марс захватил извне - из облака Клапейрона. Но возможен и иной способ их приобретения. Марс буквально "родил" свои спутники в результате мощного взрыва гигантских вулканов. Огромные куски криолитозоны планеты был выброшен из жерлов вулканов, буквально как пробки из бутылок шампанского. Такой мощный взрыв могла обеспечить захороненная в жерле вулкана твердая углекислота, которая сверху была перекрыта слоем обычной водно-минеральной криолитозоны. Резкое потепление (разогрев снизу) - и твердая углекислота взрывается, выталкивая водно-минеральную глыбу. Сила тяжести на Марсе невелика, поэтому глыбы могли быть выброшены с первой космической скоростью, и стали спутниками планеты. Орбиты марсианских спутников неустойчивы, и они в конце концов должны упасть на Марс. Такой способ заброски человека на Луну предлагал столетие назад Жюль Верн. Огромная пушка с Земли выталкивает ядро - космический корабль с человеком, которое преодолевает земное тяготение и достигает Луны. На Марсе сделать это значительно проще, так как там сила тяжести меньше земной в несколько раз, к тому же атмосфера у Марса очень разреженная и выброшенное из вулкана "ядро" не перегреется и не расплавится. Марсианские бомбы меньшего размера с реактивной углекислой тягой на меньшую высоту могут выбрасываться из жерлов вулканчиков на Марсе каждой весной. Будущим космонавтам, попавшим на Марс, я бы посоветовал не подорваться на таком вулканчике и не попасть под падающие с неба выброшенные вулканчиками глыбы.

Использованные источники информации

Сайт Википедия.

Болт Б.А. Землетрясения. М.: Мир, 1981. 256 с.

Милановский Е. Е. Рифтогенез и его роль в развитии Земли http://wsyachina.narod.ru/earth_sciences/rift_genesis.html

Милановский Е.Е. Рифтогенез в истории Земли: Рифтогенез на древних платформах. М.: Недра, 1983. 280 с.

Рогожин Е.А. ГЕОФИЗИЧЕСКАЯ НАУКА НА РУБЕЖЕ ВЕКОВ // Вестник РФФИ . - 2000.- N.3. - с.17-37. 233.

Юнга С.Л. Методы и результаты изучения сейсмотектонических деформаций. М.: Наука, 1990. 191 с.

J. M. Shultz, Z. Espinel, S. Galea, D. B. Reissman. Preliminary Determination of Earthquake Epicenters, 358,214 Events, 1963–1998.United States Geological Survey Map. 1999.

Фотографии взяты с сайтов:

http://images.yandex.ru/search?p

http://www.google.ru/imglanding?q

http://katastrofa.h12.ru/mostgreq.htm

http://www.zverozub.com/index.php?f= 294&l=1&r=2 а также личные фотографии А.В. Галанина, А.А. Галанина, В.А. Галанина.

Вопрос о том, есть ли жизнь на Марсе, не даёт покоя людям вот уже на протяжении многих десятилетий. Загадка стала ещё более актуальной после того, как возникли подозрения о наличии на планете речных долин: если по ним когда-то текли водные потоки, то присутствие жизни на находящейся по соседству с Землёй планете отрицать нельзя.

Марс расположен между Землёй и Юпитером, является седьмой по величине планетой в Солнечной системе и четвёртой по счёту от Солнца. Красная планета меньше нашей Земли в два раза: её радиус на экваторе составляет почти 3,4 тыс. км (экваториальный радиус Марса на двадцать километров больше полярного).

От Юпитера, который является пятой по счёту планетой от Солнца, Марс расположен на расстоянии от 486 до 612 млн. км. Земля находится значительно ближе: наименьшее расстояние между планетами – 56 млн. км, наибольшее расстояние – около 400 млн. км.
Не удивительно, что Марс на земном небосводе очень хорошо различим. Ярче его лишь Юпитер и Венера, и то не всегда: раз в пятнадцать-семнадцать лет, когда красная планета приближается к Земле на минимальное расстояние, на протяжении полумесяца Марс – самый яркий объект на небосводе.

Назвали четвёртую по порядку планету Солнечной системы в честь бога войны древнего Рима, поэтому графическим символом Марса является круг со стрелой, что направлена вправо и вверх (круг символизирует жизненную силу, стрела – щит и копьё).

Планеты земной группы

Марс, вместе с ещё тремя планетами, что расположены ближе всех к Солнцу, а именно Меркурием, Землёй и Венерой, входит в состав планет земной группы.

Для всех четырех планет этой группы характерны высокая плотность. В отличие от газовых планет (Юпитера, Урана), они состоят из железа, кремния, кислорода, алюминия, магния и других тяжёлых элементов (например, красный оттенок поверхности Марса придаёт оксид железа). При этом планеты земной группы по массе намного уступают газовым: самая крупная планета земной группы, Земля, в четырнадцать раз легче самой лёгкой газовой планеты нашей системы – Урана.


Как и для остальных планет земной группы, Земли, Венеры, Меркурия, для Марса характерна следующая структура:

  • Внутри планеты – частично жидкое железное ядро радиусом от 1480 до 1800 км, с незначительной примесью серы;
  • Мантия из силикатов;
  • Кора, состоящая из различных горных пород, в основном – из базальта (средняя толщина марсианской коры составляет 50 км, максимальная – 125).

Стоит заметить, что третья и четвёртая по счёту от Солнца планеты земной группы имеют естественные спутники. У Земли он один – Луна, а вот у Марса два – Фобос и Деймос, что были названы в честь сыновей бога Марса, но в греческой интерпретации, которые всегда сопровождали его в бою.

Согласно одной из гипотез, спутники являются оказавшимися в гравитационном поле Марса астероидами, поэтому отличаются спутники небольшими размерами и обладают неправильной формой. При этом Фобос понемногу замедляет своё движение, в результате чего в будущем или распадётся, или упадёт на Марс, а вот второй спутник, Деймос, наоборот, от красной планеты постепенно удаляется.

Ещё одним интересным фактом о Фобосе является то, что в отличие от Деймоса и других спутников планет Солнечной системы, восходит с западной сторону и уходит за горизонт на востоке.

Рельеф

В прежние времена на Марсе происходило движение литосферных плит, что вызвало поднятие и падение марсианской коры (тектонические плиты движутся и сейчас, но уже не так активно). Рельеф примечателен тем, что несмотря на то, что Марс является одной из самых малых планет, здесь расположено немало крупнейших объектов Солнечной системы:


Здесь находится самая высокая гора из обнаруженных на планетах Солнечной системы – недействующий вулкан Олимп: его высота от основания составляет 21,2 км. Если посмотреть на карту, можно увидеть, что гору окружает огромное количество небольших возвышенностей и хребтов.

На красной планете расположена крупнейшая система каньонов, известная под названием долина Маринер: на карте Марса их протяжённость составляет около 4,5 тыс. км, ширина – 200 км, глубина –11 км.

В северном полушарии планеты находится наибольший ударный кратер: его диаметр около 10,5 тыс. км, ширина – 8,5 тыс. км.

Интересный факт: поверхность южного и северного полушарий сильно отличаются. С южной стороны рельеф планеты немного приподнят и сильно усеян кратерами.

Поверхность северного полушария, наоборот, находится ниже среднего уровня. Кратеров на ней практически нет, а потому она являет собой гладкие равнины, что были сформированы растёкшейся лавой и эрозийными процессами. Также в северном полушарии находятся районы вулканических возвышенностей, Элизий и Фарсида. Протяжённость Фарсиды на карте составляет около двух тысяч километров, а средняя высота горной системы – около десяти километров (здесь же находится вулкан Олимп).

Разница в рельефе между полушариями являет неплавный переход, а представляет собой широкую границу вдоль всей окружности планеты, что расположена не по экватору, а в тридцати градусах от него, формируя склон в северном направлении (вдоль этой границы находится больше всего подвергнувшихся эрозии участков). В настоящий момент учёные объясняют этот феномен двумя причинами:

  1. На раннем этапе формирования планеты тектонические плиты, оказавшись рядом друг с другом, сошлись в одном полушарии и застыли;
  2. Граница появилась после столкновения планеты с космическим объектом размером с Плутон.

Полюса красной планеты

Если внимательно посмотреть на карту планеты бога Марса, можно увидеть, что на обоих полюсах находятся ледники площадью в несколько тысяч километров, состоящие из водяного льда и замёрзшей углекислоты, а толщина их колеблется от одного метра до четырех километров.

Интересным фактом является то, что на южном полюсе аппараты обнаружили действующие гейзеры: весной, когда температура воздуха поднимается, фонтаны из углекислого газа взлетают над поверхностью, поднимая песок и пыль

В зависимости от сезона, полярные шапки ежегодно меняют свои очертания: весной сухой лёд, минуя фазу жидкости, переходит в пар, а обнажившаяся поверхность начинает темнеть. Зимой ледяные шапки увеличиваются. При этом часть территории, площадь которой на карте составляет около тысячи километров, постоянно покрыта льдами.

Вода

До середины прошлого века учёные считали, что на Марсе можно найти воду в жидком состоянии, и это давало повод говорить, что жизнь на красной планете существует. Эта теория была основана на том факте, что на планете совершенно чётко просматривались светлые и тёмные участки, которые очень напоминали моря и материки, а тёмные длинные линии на карте планеты походили на долины рек.

Но, после первого же полёта к Марсу, стало очевидно, что вода из-за слишком низкого атмосферного давления в жидком состоянии на семидесяти процентах планеты находиться не может. Выдвигается предположение, что она всё же была: об этом факте свидетельствуют найденные микроскопические частички минерала гематита и других минералов, которые обычно формируются лишь в осадочных породах и явно поддавались воздействию воды.

Также многие учёные убеждены, что тёмные полосы на горных возвышенностях являются следами наличия жидкой солёной воды в настоящее время: водные потоки проступают в конце лета и исчезают в начале зимы.

О том, что это вода, свидетельствует тот факт, что полосы не идут поверх препятствия, а как бы обтекают их, иногда при этом расходятся, а затем вновь сливаются (они очень хорошо заметны на карте планеты). Некоторые особенности рельефа говорят о том, что русла рек во время постепенного поднятия поверхности смещались и продолжали течь в удобном для них направлении.

Ещё одним интересным фактом, свидетельствующим о наличии воды в атмосфере, являются густые облака, появление которых связывают с тем, что неровный рельеф планеты направляет воздушные массы вверх, где они остывают, а находящийся в них водяной пар конденсируется в ледяные кристаллы.

Появляются облака над каньонами Маринера на высоте около 50 км, когда Марс находится в точке перигелия. Движущиеся с востока воздушные потоки растягивают облака на несколько сотен километров, в то же время ширина их составляет несколько десятков.

Тёмные и светлые участки

Несмотря на отсутствие морей и океанов, закреплённые за светлыми и темными участками названия остались. Если посмотреть на карту, можно заметить, что моря по большей части находятся в южном полушарии, они хорошо просматриваются и неплохо изучены.


А вот что являют собой затемнённые участки на карте Марса – эта загадка не разгадана до сих пор. До появления космических аппаратов, считалось, что темные участки покрывает растительность. Сейчас стало очевидно, что в местах, где находятся тёмные полосы и пятна, поверхность состоит из холмов, гор, кратеров, со столкновениями которых воздушные массы, выдувают пыль. Поэтому изменение размеров и форм пятен связано с движением пыли, обладающей светлым или тёмным светом.

Грунт

Ещё одним свидетельством того, что в прежние времена жизнь на Марсе существовала, по мнению многих учёных, является грунт планеты, большая часть которого состоит из кремнезёма (25%), который благодаря содержанию находящимся в нём железа придает грунту красноватый оттенок. В почве планеты содержится немало кальция, магния, серы, натрия, алюминия. Соотношение кислотности почвы и некоторые другие её характеристики настолько близки к земным, что на них вполне могли бы прижиться растения, следовательно, теоретически жизнь в таком грунте вполне может существовать.

В почве было обнаружено наличие водяного льда (факты эти впоследствии были подтверждены не раз). Окончательно загадка была разгадана в 2008, когда один из зондов, пребывая на северном полюсе, смог извлечь из почвы воду. Через пять лет была обнародована информация о том, что количество воды в поверхностных слоях грунта Марса составляет около 2%.

Климат

Красная планета вращается вокруг своей оси под углом 25,29 градуса. Благодаря этому солнечные сутки здесь составляют 24 ч. 39 мин. 35 сек., тогда как год на планете бога Марса из-за вытянутости орбиты длится 686,9 дней.
Четвёртая по порядку планета Солнечной системы имеет времена года. Правда, летняя погода в северном полушарии холодная: лето начинается тогда, когда планета максимально удалена от звезды. Зато на юге оно жаркое и короткое: в это время Марс максимально близко приближается к звезде.

Для Марса характерно наличие холодной погоды. Средние температурные показатели планеты составляют −50 °C: зимой температура на полюсе составляет −153°C, тогда как на экваторе летом – немногим более +22 °C.


Немаловажную роль в распределении температуры на Марсе играют многочисленные пылевые бури, начинающиеся после таяния льдов. В это время атмосферное давление быстро повышается, в результате чего большие массы газа начинают двигаться к соседнему полушарию на скорости от 10 до 100 м/с. При этом с поверхности поднимается огромное количество пыли, что полностью скрывает рельеф (не просматривается даже вулкан Олимп).

Атмосфера

Толщина атмосферного слоя планеты составляет 110 км, и почти на 96% он состоит из углекислого газа (кислорода лишь 0,13%, азота – несколько больше: 2,7%) и очень разряжена: давление атмосферы красной планеты в 160 раз меньше, чем у Земли, при этом из-за большого перепада высот оно сильно колеблется.

Интересно, что зимой около 20-30% всей атмосферы планеты сосредотачивается и примерзает к полюсам, а во время таяния льда возвращается в атмосферу, минуя жидкое состояние.

Поверхность Марса очень плохо защищена от вторжения извне небесных объектов и волн. По одной из гипотез, после столкновения на раннем этапе своего существования с крупным объектом удар был такой силы, что вращение ядра приостановилось, а планета потеряла большую часть атмосферы и магнитного поля, которые являлись щитом, защищая её от вторжения небесных тел и солнечного ветра, что несёт с собой радиацию.


Поэтому, когда Солнце показывается или уходит за горизонт, небо Марса красновато-розового цвета, а возле солнечного диска заметен переход от голубого к фиолетовому. Днём небосвод окрашивается в желто-оранжевый цвет, который придаёт ему летающая в разряженной атмосфере красноватая пыль планеты.

В ночную пору самым ярким объектом на небосводе Марса является Венера, за ней – Юпитер со спутниками, на третьем месте – Земля (поскольку наша планета расположена ближе к Солнцу, для Марса она является внутренней, поэтому видна только утром или вечером).

Существует ли жизнь на Марсе

Вопрос о существовании жизни на красной планете стал особо популярен после публикации романа Уэльса «Война миров», по сюжету которого наша планета оказалась захвачена гуманоидами, и землянам лишь чудом удалось выжить. С тех пор тайны планеты, расположенной между Землёй и Юпитером, интригуют вот уже не одно поколение, а описанием Марса и его спутниками интересуется всё больше людей.

Если смотреть на карту Солнечной системы, становится очевидно, что Марс находится от нас на небольшом расстоянии, следовательно, если жизнь могла возникнуть на Земле, то она вполне могла бы появиться и на Марсе.

Интригу подогревают и учёные, которые сообщают о наличии воды на планете земной группы, а также подходящих для развития жизни условий в составе грунта. Кроме того, в интернете и специализированных журналах нередко публикуют снимки, на которых камни, тени и другие изображённые на них предметы сравнивают со зданиями, памятниками и даже остатками хорошо сохранившихся представителей местной флоры и фауны, стремясь доказать существование жизни на этой планеты и разгадать все тайны Марса.

). Одними из самых ярких элементов марсианской поверхности являются уже упомянутые гигантские метеоритные кратеры Аргире и Эллада, расположенные в южном полушарии на континенте Царсис, а также находящийся немного севернее экватора кратер Исиды. Он когда-то представлял собой залив Великого Северного океана, напоминавший Мексиканский залив на Земле. Диаметры этих кратеров колоссальны и составляют соответственно 700 км, 2000 км и 1000 км. Все эти кратеры были раньше заполнены морями, глубины ккоторых достигали шести километров в кратерах Аргире и Исиды и восьми-девяти в кратере Эллада.
Наибольший интерес представляет кратер Эллады. Он имеет самые большие на Марсе размеры и глубины - диаметр около 2000 км, а глубина доходит до 9 км - и характеризуется правильной чашевидной формой с крутыми бортами. Похоже, что именно в этом месте Марс принял на себя удар крупнейшего из всех астероидов, размер которого мог достигать нескольких десятков километров. Такой астероид вполне мог даже пробить марсианскую кору. Два других кратера также являются следами столкновения с планетой огромных каменных глыб, хотя и немного меньшего размера.

Фобос и Деймос - астероиды, не упавшие на Марс?


Следы мощной метеоритной бомбардировки Марса астероидами размером от нескольких метров до нескольких десятков километров позволяют обратить самое пристальное внимание на два его спутника - Фобос и Деймос, имена которых в переводе с греческого языка буквально означают Страх и Ужас. Они являются астероидами, захваченными полем тяготения Марса, а не лунами, которые когда-то образовались вблизи планеты.
Фобос и Деймос бесформенны и совсем невелики. Их темная, как у большинства других астероидов, поверхность покрыта многочисленными кратерами и изрыта бороздами. По мнению астрономов, оба спутника Марса относятся к богатому углеродом так называемому С-типу астероидов. Их плотность составляет 1,9 г/кв.см, что позволяет считать, что Фобос и Деймос представляют собой смесь горных пород и льда.
Более крупный спутник Марса Фобос вращается на расстоянии всего 5920 км от поверхности этой планеты. Его орбита находится совсем рядом с так называемым пределом Роша - тем критическим расстоянием, на котором гравитационные силы разрывают спутник на части. Астрономы считают, что он обречен и через несколько миллионов лет рухнет на Марс.
Самой яркой особенностью рельефа Фобоса является кратер Стикни диаметром около 10 км. Удар, во время которого образовался этот кратер, был настолько силен, что он едва не расколол Фобос на части. В результате такого сильного удара образовались многочисленные желоба шириной от 100 до 700 м и глубиной от 10 до 90 м и полосы на поверхности Фобоса.

Присутствие на поверхности Фобоса кратера Стикни привело к появлению многочисленных гипотез о том, что он был образован во время... ядерного удара, который был нанесен... марсианами с особой точностью и с таким расчетом, чтобы не разрушить Фобос, а заставить его вращаться вокруг поверхности Марса на расстоянии, немного большем, чем предел Роша.

Согласно гипотезе российского геолога профессора А. Портнова, раньше существовал, по крайней мере, еще один спутник Марса - Танатос (Смерть). Танатос прошел через предел Роша несколько миллионов лет назад, и его обломки уничтожили на Марсе все живое.
Возможно, Танатос был астероидом, врезавшимся в эту планету в районе кратера Эллада. В таком случае кроме него должны были существовать еще два крупных астероида и множество мелких.
Возможно, что врезавшиеся в Марс глыбы горных пород образовались в результате раскола какого-то более крупного небесного тела , разрушенного атмосферой, гравитационным взаимодействием с Марсом или... марсианами. Но ничто не смогло уберечь Марс от той ужасной участи, которая его ожидала .

Читайте мою работу "Как погиб Фаэтон? "

Изучение изображений больших участков поверхности Марса, сделанных с высоким разрешением, позволяет выделить на ней множество элементов рельефа - одиночных и сгруппированных в зоны шириной до нескольких сотен километров пропастей, ущелий, желобов, оврагов, поднятий, связанных с зонами разломов и трещин, которые имеют протяженность от нескольких сотен до нескольких тысяч километров. Подобные образования особенно широко развиты в северном полушарии Марса. Самыми крупными из них являются зоны разломов Трактус, Танталус и Темпе, расположенные к востоку от вулкана Альба и на Земле Темпе. Эти зоны практически ничем, кроме больших размеров, не отличаются от новообразованных рифтовых зон, расколов, трещин и других линейных структур, обнаруженных в конце 2004-2007 гг. американской межпланетной станцией "Кассини" на спутниках Сатурна Дион, Рея, Япетус и Энцелад, а также от желобов и полос на Фобосе.
Как было сказано выше, образование всех этих структур связано со столкновением перечисленных небесных тел с астероидами. По-видимому, такое же происхождение имеют и протяженные зоны разломов и трещин на Марсе.
Данный вывод имеет очень большое значение для понимания движущей силы глубинных, эндогенных процессов на Земле. Он ставит точку в извечном споре сторонников дрейфа континентов (так называемых "мобилистов"), вертикальных движений земной коры (так называемых "фиксистов") и кольцевой структуры Земли.
По-видимому, первопричиной большинства эндогенных процессов на Земле являлась перестройка конвективных течений в мантии (переноса расплавленного вещества недр), которая происходила в результате столкновения нашей планеты с крупными астероидами. Каждое такое столкновение в прежние геологические эпохи сопровождалось перестройкой системы рифтовых зон, расколом континентов, образованием новых океанов и горно-складчатых поясов и площадным трапповым (базальтовым) вулканизмом.
Таким образом, зная геометрию рифтовых зон и других глубинных разломов в прошлом, можно определить места столкновений Земли с астероидами.

Читайте мою работу "Великие катастрофы в истории Земли "

Арабские цифры и пирамиды в Сидонии?


Пожалуй, главным свидетельством в пользу существования марсианской цивилизации на сегодняшний день является Сидония. Эта наиболее интересная и самая загадочная область Марса, расположенная на границе равнин Ацидалия и Аравия - на побережье выделенного мной Великого Северного океана - давно привлекает к себе внимание многих исследователей.
Еще в 1976 году орбитальным летательным аппаратом Viking Orbiter 1 здесь были получены изображения холма с человеческим лицом, который вскоре окрестили "марсианским сфинксом", а также нескольких десятков других "искусственных" образований - "марсианских пирамид". Эти "пирамиды" образуют так называемые "город" и "городскую" площадь". Интерес к ним был настолько велик, что в
течение 1997-2000 годов американский орбитальный летательный аппарат Global Surveyor Orbiter совершил ряд незапланированных маневров с единственной целью провести детальное фотографирование этой территории.

После многократных пролетов над Сидонией было получено более десятка высококачественных изображений поверхности Марса.
На всех изображениях хорошо видны древние береговые линии Великого Северного океана, участки суши с возвышенностями и со столовыми горами, у которых плоские вершины, конусы выноса, а также участки континентального шельфа. На одних фотографиях выделяются врезанные в скальные породы речные долины, на других - многочисленные острова, заливы и проливы. Создается впечатление, что эта территория имела меняющуюся береговую линию.
Пожалуй, самыми интересными элементами рельефа Сидонии являются многочисленные образования округлой и треугольной формы, удивительно напоминающие пирамиды - как простые, аналогичные египетским, так и с усеченным конусом, подобные мексиканским.
Размер таких образований от десяти до ста метров в поперечнике. Встречаются "пирамиды" и побольше - 200-300 м. Многие из них сгруппированы в линии, треугольники и другие геометрические фигуры. Большая часть "пирамид" расположена на древней суше.
Мнения исследователей относительно происхождения "пирамид" разделились. Одни считают их естественными образованиями, сформированными в результате выветривания вулканических или осадочных пород. Другие видят в их образовании волю разума. Споры не утихают и по сей день. Наверное, они прекратятся только после проведения пилотируемых экспедиций на Марс и детального изучения этого региона.
Однако анализ представленных на сайте НАСА изображений позволяет сделать вывод, что "пирамиды" и столовые горы - две совершенно разных формы рельефа. "Пирамиды" значительно меньше столовых гор.
На ряде изображений хорошо видно, что они имеют правильные грани равностороннего треугольника, а усеченные "пирамиды" к тому же - совершенно плоские поверхности. Но еще более интересным является то, что
в нижней части некоторых пирамид отлично видны круглые отверстия, которые могут быть входами в них. Значит, все-таки марсиане...?
Кроме "пирамид", на фотографиях поверхности Марса встречаются многочисленные круглые и овальные "колодцы" с возвышающимися над поверхностью стенами размером от нескольких десятков до ста метров и более. Они заметно отличаются от встречающихся в этом же районе кратеров и также могут представлять собой искусственные образования.
Гипотеза о древнем марсианском городе получила неожиданное развитие в январе 2004 года, когда на переданных марсоходом Spirit нескольких черновых изображениях марсианской поверхности удалось разглядеть на одном из камней арабские цифры 194.
Конечно, качество изображений оставляет желать лучшего. Возможно, это всего лишь игра природы. Но все-таки... Ведь на Земле тоже нередко можно видеть начерченные на скале или здании надписи и цифры. А если бы эта скала или здание разрушилось... Случайная находка, конечно, маловероятна, но, тем не менее, она вполне возможна....

Поверхность Марса является предметом интереса многих ученых, астрономов и обычных людей, не имеющих отношения к исследованиям. Интерес общества понятен, так как Марс - один из ближайших соседей Земли, 4-я планета от Солнца. Извечный вопрос: "Есть ли жизнь на Марсе?" до сих пор актуален, исследования поверхности и атмосферы планеты продолжаются. Загадочная планета скрывает на своей поверхности много интересных фактов о поверхности Марса , доступного для понимания человечества.

  1. Согласно исследованиям грунта и количества кратеров, возраст поверхности планеты достигает значения 4 млрд. лет . Причем южное полушарие образовалось раньше, чем северное, о чем свидетельствует различный характер почвы.
  2. Марс - планета, подобная Земле . Твердая поверхность постоянно меняется под действием таких факторов, как контакт с космическими телами, перемещение земной коры, налеты пылевых бурь и извержение вулканов.
  3. Отсутствует участок стратосферы, наиболее обогащенного озоном . На планете нет озонового слоя, что способствует проникновению больших доз радиации при восходе Солнца.
  4. Необычную окраску планете придают оксиды железа, которые присутствуют в грунте в большом количестве .
  5. Поверхность планеты состоит из темных и светлых участков, которые носят названия морей и материков соответственно . Несмотря на постоянное воздействие пылевых бурь, темные пятна остаются неизменными. Их характер изучается, мнения ученых разделились. Одни считают, что темный цвет соответствует наличию густой растительности, другие придерживаются мнения, что цвет пятна зависит от характера рельефа и степени осаждения пыли.
  6. Различная поверхность на южном и северном полушарии . Южная часть расположена выше среднего уровня, и напоминает рельеф Луны из-за часто встречающихся кратеров. Северное полушарие представляет собой равнины, с редко расположенными углублениями. Ровный характер поверхности мог образоваться вследствие разрушения грунта водой и ветром. Некоторые ученые объясняют столь различный асимметричный рельеф полушарий схождением литосферных плит, наподобие случившегося с Пангеей. Еще одна версия предполагает соударение Марса с телом, размеры которого аналогичны величине Плутона.
  7. На поверхности Марса встречаются самые разнообразные кратеры, отличающиеся размерами и формой . Некоторые углубления являются характерными только для Марса. Кратеры с валом являются следствием течения жидких масс, а возвышенные углубления появились на местах, огражденных от действия ветров.

    7

  8. На планете расположены 2 области, на которых располагаются вулканы . Фарсида и Элизиум – участки, на которых были замечены самые активные процессы.
  9. Поверхность планеты хранит на своих просторах каньон "Долина Маринера", превышающий в размерах американский Большой Каньон, и гору Олимп . Гора превосходит в размерах Эверест, является самой высокой горой Солнечной системы.

    9

  10. Поверхность Марса хранит свидетельства того, что в давние времена территория была испещрена реками . Доказательствами служат высохшие русла, внешний вид камней, наличие особых пород, которые образовываются только под действием воды.
  11. Поверхность планеты скрывает под собой водные ресурсы, которые увеличиваются с течением времени . Ученые обнаружили поток тепловых частиц, который может свидетельствовать о том, что в грунте есть вода.
  12. На территории Марса встречается субстанция, состоящая из пыли и льда, насчитывающая несколько миллионов лет . Ледяные вещества сохраняют свой изначальный вид, не тая под действием ультрафиолетовых лучей. С каждым годом количество подобных структур увеличивается. Ученые изучили состав нового вещества, дали ему название сухой лед.
  13. Состав почвы планеты близок к земному грунту . Ученые провели ряд исследований, вследствие которых было установлено, что, с точки зрения теории, на Марсе можно выращивать растения. Однако не только почва влияет на процесс роста живых организмов. Преимущественно холодный климат, частые песчаные бури, и прочие негативные моменты препятствуют благоприятному выращиванию.
  14. На возвышенности Фарсида находятся специфические колодцы, с глубиной около 200 м . Специалисты считают, что возникновение углублений связано с действием вулканов.
  15. Состав атмосферы и другие неблагоприятные составляющие позволяют судить о том, что сегодня жизнь на Красной планете исключена в том ракурсе, который знаком обществу . В задачи ученых входит исследование возможностей планеты для нормального жизнеобеспечения в будущем, а также изучение прошлого Марса.

Мы надеемся Вам понравилась подборка с картинками - Интересные факты о поверхности Марса (15 фото) онлайн хорошего качества. Оставьте пожалуйста ваше мнение в комментариях! Нам важно каждое мнение.

– четвёртая по расстоянию от Солнца планета Солнечной системы. Её название происходит от имени бога войны, что, вероятно, объясняется ассоциацией с красным цветом планеты. Марс можно увидеть невооруженным глазом. Данные, полученные в результате исследовательской деятельности межпланетных автоматических станций, позволили сделать выводы о существующем сходстве этой планеты с Землёй. Техническая посадка на Марс была осуществлена относительно недавно.

Можно отметить сходство лунной и марсианской поверхности, хотя морфология ландшафта последней более сложная: имеются в большом количестве кратеры, равнины, каньоны и вулканы.

Следует отметить наличие воды (особенно в районах полюсов) в подповерхностных слоях грунта. Это явление носит название пермафрост.
Так же как и на Земле, из-за наклона оси вращения на Марсе происходит смена сезонов с изменением температуры поверхности планеты. Средняя температура – 40°С, летом до -14°С, зимой до – 120°С.

Для геологической структуры Марса не характерны тектонические плиты. Охлаждение и последующее увеличение толщины коры не способствовали образованию тектонических плит. Другими словами, Марс представляет собой единую плиту с эндогенными, т.е. “внутренними” (например, выступы лавообразных пород в мантии, вулканы), и экзогенными характеристиками (удары метеоритов, повредившие кору).

Между двумя полушариями планеты существует значительная разница: в северном преобладают гладкие равнины и отмечается умеренное число кратеров, в южном полушарии кратеров в 5 раз больше. Объяснить эти различия можно более древним происхождением южного полушария – примерно 3,8 миллиарда лет назад, в это время происходила активная метеоритная бомбардировка в Солнечной системе.

Между обоими полушариями простирается поверхность со своеобразной морфологией ландшафта, её название – Тарсис. На этой территории есть вулканические образования, горы Арсиа, Павонис, Аскреус, Олимпус, а также Долины Маринерис и целая система каньонов.

Русла рек

На поверхности Марса просматриваются образования, похожие на русла рек на Земле. Ширина некоторых из них достигает 200 км.

Так называемые русла подразделяются на два вида: первый представляет собой небольшие, извилистые образования с разветвлениями “рек”. Второй представляет как глубокое русло, причём размеры его одинаковы на всём протяжении.

Существуют две гипотезы о происхождении этого феномена. Согласно первой, речь идёт о существовании различных рек на поверхности планеты при умеренном климате. Согласно второй гипотезе, эти русла представляют собой остаточное явление после резкого и внезапного образования водяных потоков в результате разлома коры. В качестве подтверждения этой теории приводятся Долины Маринерис протяжённостью более 5000 км, изрезанные руслами потоков воды, появившихся, судя по всему, внезапно.

Океаны

Несмотря на существующий в настоящее время сухой и холодный климат Марса, имеются подтверждения разрушительной деятельности воды и льда на планете. Русла несуществующих рек, равнины, покрытые льдом, пермафрост и ледяные шапки – всё это свидетельствует о том, что в какой – то период геологической истории Марса климат был умеренный, и, соответственно, на поверхности планеты была вода.

Для первых геологических эр были характерны ударные метеоритные бомбардировки и частые извержения вулканов. Именно в этот период наблюдается разрушение, эрозия кратеров под воздействием воды, в это же время формируется русла рек. Наличие воды, необходимой для эрозивных явлений, не может быть следствием только плавки и сбора воды в пермафросте.

Вероятно существование на каком-то этапе и гидродинамического цикла, для которого характерно наличие в атмосфере водяного пара. Просматриваемые русла рек свидетельствуют о том, что когда то климат был умеренный. В связи с этим можно высказать предположение о существовании в далёком прошлом океанов с обычным круговоротом воды – имеется в виду испарение воды, её конденсация в облаках и дальнейшее извержение на поверхность. Завершение этого цикла и последующая адсорбация воды пористыми породами могут быть связанны с небольшой массой планеты, она не могла удерживать газы, входящие в состав атмосферы.

После первых этапов эволюции планеты с характерным умеренным климатом наступают другие времена. Именно в этот период формируется океан на поверхности планеты. Таким образом можно объяснить происхождение Долин Маринерис, водных каналов и других трещин, существующих на поверхности Тарсис. Образование океана на поверхности Марса можно аргументировать разломом пермафроста в результате вулканической деятельности. Каньоны также расположены вблизи от структур вулканического происхождения.

Наличие воды вызывает изменения в атмосфере – в неё поступают водяной пар и углекислый газ с поверхности. Парниковый эффект прогрессирует, в результате повышается температура, из-за чего происходит таяние полярных шапок планеты. Как следствие этих явлений – начинается впитывание воды, медленное и продолжительное по времени, пористой поверхностью планеты. Далее события развиваются следующим образом – повышается отражательная способность (из-за льда, которая покрывает поверхность) планеты, понижается её температура. Цикл завершается. Вода впитывается поверхностью Марса.

Со временем внутренняя температура планеты понижается, вулканическая деятельность затухает. Климат стабилизируется.

Атмосфера

Благодаря исследованиям, проводившимся при помощи межпланетных автоматических станций, был установлен состав атмосферы Марса – она состоит из 96% углекислого газа, 2,7% азота и 1,6% аргона. Кислород составляет только 0,13%, а водяной пар – 0,03%. Давление на поверхности низкое, оно составляет шесть тысячных от земного давления. Предположим, что астронавт совершает посадку на Марс. Что он увидит? Красноватое из-за пылинок, переносимых ветром, небо. Из-за низкой плотности солнечные лучи не обогревают планету, между потоками воздуха существует значительная разница в температуре. Марсианские облака состоят из воды и углекислого газа, внешне они похожи на наши перистые облака. Марсианские облака в основном повторяют рельефные очертания планеты.

Вверх