Что подтверждает древность происхождения водорослей. Глава II. Происхождение, родственные связи и эволюция водорослей. Водоросли соленых водоемов

Понятие «водоросли» в научном отношении неопределенно. Слово «водоросли» буквально означает лишь то, что это растения, живущие в воде, однако не все растения в водоемах можно с научной точки зрения назвать водорослями, такие растения, как тростник, камыш, рогоз, кувшинки, кубышки, мелкие зеленые пластинки ряски и др., являются семенными (или цветковыми) растениями. К этим растениям научный термин «водоросли» неприменим, их называют водяными растениями

Понятие «водоросли» – не систематическое, а биологическое. Водоросли (Algae ) – это сборная группа организмов, основная часть которых, согласно современным представлениям, входит в царство Растений (Plantae ), в котором она составляет два подцарства: багрянки, или красные водоросли – Rhodobionta и настоящие водоросли – Phycobionta (в третье подцарство царства Растений входят высшие (зародышевые или листостебельные) растения – Embryobionta ). Остальные организмы, относимые к водорослям, сейчас уже не считаются растениями: синезеленые и прохлорофитовые водоросли часто считают самостоятельной группой или относят к бактериям, а эвгленовые водоросли иногда относят к подцарству животных – простейшим. Различные группы водорослей возникли в разное время и, по-видимому, от разных предков, но в результате эволюции в сходных условиях обитания приобрели много сходных черт.

У организмов, объединяемых в группу водорослей, есть ряд общих признаков. В морфологическом отношении для водорослей наиболее существенным признаком является отсутствие многоклеточных органов – корня, листьев, стебля, типичных для высших растений. Такое нерасчлененное на органы тело водорослей носит название слоевище, или таллом.

У водорослей более простое (по сравнению с высшими растениями) анатомическое строение – нет проводящей (сосудистой) системы, поэтому водоросли, относимые к растениям, являются бессосудистыми растениями. Водоросли никогда не образуют цветков и семян, а размножаются вегетативно или спорами.

В клетках водорослей содержится хлорофилл, благодаря которому они способны ассимилировать на свету углекислый газ (т.е. питаться при помощи фотосинтеза), это преимущественно обитатели водной среды, но многие приспособились к жизни в почве и на ее поверхности, на скалах, на стволах деревьев и в других биотопах.

Организмы, относимые к водорослям чрезвычайно разнородны. Водоросли принадлежат как к прокариотам (доядерным организмам), так и к эукариотам (истинно ядерным организмам). Тело водорослей может быть всех четырех степеней сложности, вообще известных для организмов: одноклеточным, колониальным, многоклеточным и неклеточным, размеры их колеблются в очень широких пределах: мельчайшие соизмеримы с бактериальными клетками (не превышают 1 мкм в диаметре), а наиболее крупные морские бурые водоросли достигают 30–45 м в длину.

Водоросли разделяются на большое количество отделов и классов и разделение их на систематические группы (таксоны) производится по биохимическим особенностям (набор пигментов, состав клеточной оболочки, тип запасных веществ), а также по субмикроскопическому строению. Однако для современной систематики водорослей характерно множество разнообразных систем. Даже на самых высоких таксономических уровнях (надцарства, подцарства, отделы и классы) систематики не могут прийти к единому мнению.

По одной из современных систем, водоросли делятся на 12 отделов: синезеленые, прохлорофитовые, красные, золотистые, диатомовые, криптофитовые, динофитовые, бурые, желтозеленые, эвгленовые, зеленые, харовые. Всего известно около 30 тысяч видов водорослей.

Наука о водорослях называется альгология или фикология, ее рассматривают как самостоятельный раздел ботаники . Водоросли являются объектами для решения вопросов, относящихся к другим наукам (биохимии , биофизики , генетики и др.) Данные альгологии учитывают при разработке общебиологических проблем и хозяйственных задач. Развитие прикладной альгологии идет в трех основных направлениях: 1) использование водорослей в медицине и в различных областях хозяйства; 2) для решения природоохранных вопросов; 3) накопление данных о водорослях для решения задач других отраслей.

Строение водорослей.

Основной структурной единицей тела водорослей, представленных одноклеточными и многоклеточными формами, является клетка. Существуют различные типы клеток водорослей, их разделяют по форме (шаровидные, цилиндрические и т. д.), функциям (половые, вегетативные, способные и не способные к фотосинтезу и др.), расположению и пр. Но наиболее принципиальной в наши дни считается классификация клеток по особенностям их тонкого строения, обнаруживаемого с помощью электронного микроскопа. С этой точки зрения различают клетки, содержащие типичные ядра, (т.е. ядра, окруженные ядерными оболочками, мембранами), и клетки, не имеющие типичных ядер. Первый случай – эукариотическое строение клетки, втором – о прокариотическое. Прокариотическое строение клетки имеют синезеленые и прохлорофитовые водоросли, эукариотическое – представители всех других отделов водорослей.

Вегетативное тело водорослей (слоевище) отличается морфологическим разнообразием, водоросли могут быть одноклеточными, колониальными, многоклеточными и неклеточными. Размеры их в пределах каждых из этих форм колеблются в широких пределах – от микроскопических до очень крупных.

Особенность одноклеточных форм водорослей определяется тем, что их организм состоит из одной клетки, поэтому в ее строении и физиологии сочетаются клеточные и организменные черты. Это автономная система, способная расти и самовоспроизводиться, мелкая, не видимая простым глазом одноклеточная водоросль является своеобразной фабрикой, которая добывает сырье (поглощая из окружающей среды растворы минеральных солей и углекислоты), перерабатывает и производит такие ценные соединения, как белки, углеводы и жиры. Кроме того, важными продуктами ее жизнедеятельности является кислород и углекислый газ и, таким образом, она активно участвует в круговороте веществ в природе. Одноклеточные водоросли иногда образуют временные или постоянные скопления (колонии).

Многоклеточные формы возникли после того, как клетка проделала длительный и сложный путь развития как самостоятельный организм. Переход от одноклеточного к многоклеточному состоянию сопровождался потерей индивидуальности и связанными с этим изменениями в структуре и функциях клетки. Внутри талломов многоклеточных водорослей складываются качественно иные отношения, чем между клетками одноклеточных водорослей. С возникновением многоклеточности появилась дифференциация и специализация клеток в талломе. С эволюционной позиции это следует рассматривать как первый шаг на пути становления тканей и органов.

Уникальную группу составляют сифоновые водоросли: у них талломы не поделены на клетки, однако и у них в цикле развития есть одноклеточные стадии.

Окраска водорослей многообразна (зеленая, розовая, красная, оранжевая, почти черная, фиолетовая, голубая и др), обусловлено это тем, что одни водоросли содержат только хлорофилл, а другие – еще ряд пигментов, окрашивающих их в различные цвета.

Водоросли (а точнее, синезеленые водоросли, или цианобактерии) были первыми организмами на Земле, у которых в процессе эволюции появилась способность к фотосинтезу, процессу образования органических веществ под воздействием света. Как источник углерода при фотосинтезе используется углекислый газ (CO 2), в качестве источника водорода – вода (H 2 O), а в результате выделяется свободный кислород.

Тип питания с помощью фотосинтеза, при котором организм, используя энергию фотосинтеза, синтезирует все необходимые органические вещества из неорганических, стал одним из основных способов питания водорослей и других зеленых растений. Однако многие водоросли могут при определенных условиях достаточно легко переключаться с фотосинтезного способа питания на ассимиляцию различных органических соединений, при этом организм использует для питания готовые органические вещества, или сочетает этот способ питания с фотосинтезом.

Помимо использования органических соединений как источника углерода, водоросли могут переключаться с ассимиляции неорганического нитратного азота на усвоение азота из органических соединений, некоторые синезеленые водоросли могут вообще обходиться без связанных форм азота и фиксировать свободный азот из атмосферы как азотофиксирующие организмы.

Многообразие способов питания водорослей позволяют им иметь широкие ареалы и занимать разнообразные экологические ниши.

Воспроизведение себе подобных у водорослей совершается посредством вегетативного, бесполого и полового размножения .

Происхождение водорослей.

Вопрос о происхождении и эволюции водорослей очень сложен из-за разнообразия этих растений, особенно их субмикроскопического строения и биохимических признаков, кроме того, большинство водорослей в ископаемом состоянии не сохранилось и нет связующих звеньев между современными отделами растений в виде организмов промежуточного строения.

Проще всего решается вопрос о происхождении прокариотических (доядерных) водорослей – синезеленых, имеющих много общих признаков с фотосинтезирующими бактериями. Вероятнее всего, синезеленые водоросли произошли от организмов, близких к пурпурным бактериям и содержащих хлорофилл ().

О происхождении эукариотических (ядерных) водорослей сейчас нет единой точки зрения. Есть две группы теорий, исходящих или из симбиотического, или из несимбиотического их происхождения, однако против каждой из этих теорий есть свои возражения.

По теории симбиогенеза, хлоропласты и митохондрии клеток эукариотических организмов некогда были самостоятельными организмами: хлоропласты – прокариотическими водорослями, митохондрии – аэробными бактериями (). В результате захвата амебоидными эукариотическими организмами аэробных бактерий и прокариотических водорослей возникли предки современных групп эукариотических водорослей. Некоторые исследователи приписывают симбиотическое происхождение также хромосомам и жгутикам.

По теории несимбиотического происхождения эукариотические водоросли возникли от предка, общего с синезелеными водорослями, имеющего хлорофилл и фотосинтез с выделением кислорода, в этом случае современные фотосинтезирующие прокариоты (синезеленые водоросли) – это боковая, тупиковая ветвь растительной эволюции.

Основные факторы, влияющие на развитие водорослей.

Основными факторами, влияющими на развитие водорослей, являются свет, температура, наличие воды, источников углерода, минеральных и органических веществ. Водоросли широко распространены по всему земному шару, их можно встретить в воде, в почве и на ее поверхности, на коре деревьев, стенах деревянных и каменных построек и даже в таких негостеприимных местах, как пустыни и ледники.

Факторы, влияющие на развитие водорослей, подразделяют на абиотические, не связанные с деятельностью живых организмов, и биотические, обусловленные этой деятельностью. Многие факторы, особенно абиотические, являются лимитирующими, т.е. они способны ограничивать развитие водорослей. Жизнь всех организмов, в том числе и водорослей, зависит от содержания в среде обитания необходимых веществ, значения физических факторов, а также диапазона устойчивости самих организмов относительно изменений условий среды. Уровень, при котором конкретный фактор может выступать как лимитирующий, для разных видов водорослей различен. В водных экосистемах к лимитирующим факторам относятся температура, прозрачность, наличие течения, концентрация кислорода, углекислого газа, солей и биогенных веществ. В наземных местообитаниях основными лимитирующими факторами являются климатические: температура, влажность, свет и т.д., а также состав и строение субстрата. Эти две группы факторов вместе с популяционными взаимодействиями определяют характер наземных сообществ и экосистем.

Для большинства водорослей вода – постоянная среда обитания, однако многие их виды могут жить и вне воды. Среди растений, обитающих на суше, по устойчивости к высыханию выделяют пойкилогидрические, не способные поддерживать постоянное содержание воды в тканях, и гомойгидрические, способные поддерживать постоянную гидратацию тканей. У пойкилогидрических водорослей (синезеленые и некоторые зеленые водоросли) клетки при высыхании сжимаются без необратимого изменения ультраструктуры и, следовательно, не теряют жизнеспособности, при увлажнении у них восстанавливается нормальный обмен веществ. Минимальная влажность, при которой возможна нормальная деятельность таких растений, различна. Клетки гомойгидрических водорослей при высыхании погибают, поэтому такие растения, как правило, обитают при постоянно избыточной увлажненности. К гомойгидрическим водорослям относятся, например, некоторые виды зеленых и желтозеленых водорослей.

Соленость и минеральный состав воды – это важнейшие лимитирующие факторы, влияющие на распределение водорослей.

Водоросли обитают в водоемах самой различной солености: от пресных водоемов, минерализация которых не превышает обычно 0,5 г/л, до крайне засоленных (гипергалинных) водоемов, концентрация солей которых находится в пределах от 40 до 347 г/л. Несмотря на то, что в целом водорослям свойственна такая широкая амплитуда солеустойчивости, конкретные виды в большинстве своем стеногалинные , т.е. способны обитать лишь при определенном значении солености. Эвригалинных видов водорослей, способных существовать при разной солености, сравнительно немного.

Кислотность воды также является лимитирующим фактором. Устойчивость разных таксонов водорослей к изменениям кислотности (рН) столь же различна, как и к изменениям солености. Некоторые виды водорослей живут только в щелочных водах, при высоком значении рН, другие обитают в кислых водах, при низком рН.

Наличие в среде макро- и микроэлементов, являющихся необходимыми компонентами тела водорослей, имеет решающее значение для интенсивности их развития.

Элементы и их соединения, относящиеся к макроэлементам, требуются организмам в сравнительно больших количествах. Наиболее важны азот и фосфор, почти столь же необходимы калий, кальций, сера и магний.

Микроэлементы необходимы растениям в крайне малых количествах, но они имеют огромное значение для их жизни, поскольку входят в состав многих жизненно-важных ферментов. Микроэлементы нередко выступают как лимитирующие факторы. К ним относятся 10 элементов: железо, марганец, цинк, медь, бор, кремний, молибден, хлор, ванадий и кобальт.

Водоросли разных отделов имеют неодинаковые потребности в макро- и микроэлементах. Например, для нормального развития диатомовых водорослей требуется довольно значительное количество кремния, который используется для постройки их панциря. При недостатке кремния панцири диатомовых истончаются.

Почти во всех пресноводных и морских экосистемах лимитирующим фактором является концентрация в воде нитратов и фосфатов. В пресных водоемах с низким содержанием карбонатов к лимитирующим факторам могут быть причислены концентрации солей кальция и некоторых других.

Свет необходим водорослям как источник энергии фотохимических реакций и как регулятор развития. Его избыток, также как и недостаток, может быть причиной серьезных нарушений развития водорослей. Поэтому свет тоже является лимитирующим фактором при слишком большой или слишком маленькой освещенности.

Распределение водорослей в толще воды в значительной степени определяется наличием света, необходимого для нормального фотосинтеза. Слой воды выше границы обитания фотоавтотрофных организмов называется эвфотической зоной . В море граница эвфотической зоны обычно находится на глубине 60 м, изредка опускаясь до глубины 120 м, а в прозрачных водах океана – приблизительно до 140 м. В озерных, значительно менее прозрачных водах, граница этой зоны обычно проходит на глубине 10–15 м, а в наиболее прозрачных гляциальных и карстовых озерах – на глубине 20–30 м.

Оптимальные значения освещенности для разных видов водорослей варьируются в широких пределах. По отношению к свету выделяют гелиофильные и гелиофобные водоросли. Гелиофильные (светолюбивые) водоросли для нормальной жизнедеятельности нуждаются в значительном количестве света. К ним относится большинство синезеленых и значительное количество зеленых водорослей, обильно развивающихся в летнее время в поверхностных слоях воды. Гелиофобные (избегающие яркого света) водоросли приспособлены к условиям низкой освещенности. Например, большинство диатомовых водорослей избегает ярко освещенного поверхностного слоя воды и в малопрозрачных водах озер интенсивно развивается на глубине 2–3 м, а в прозрачных водах морей – на глубине 10–15 м.

У водорослей разных отделов в зависимости от состава особых светочувствительных пигментов, максимальная активность фотосинтеза наблюдается при разной длине световых волн. В наземных условиях частотные характеристики света довольно постоянны, поэтому постоянна и интенсивность фотосинтеза. При прохождении через воду свет красной и синей области спектра поглощается, и на глубину проникает зеленоватый свет, слабо воспринимаемый хлорофиллом. Поэтому там выживают в основном красные и бурые водоросли, имеющие дополнительные фотосинтезирующие пигменты, способные использовать энергию зеленого света. Отсюда становится понятным огромное влияние света на вертикальное распределение водорослей в морях и океанах: в приповерхностных слоях, как правило, преобладают зеленые водоросли, глубже – бурые, и на наиболее глубоководных участках – красные. Однако подобная закономерность не является абсолютной. Многие водоросли способны существовать в условиях крайне низкой, не свойственной им освещенности, а иногда и в полной темноте. При этом у них могут происходить определенные изменения в пигментном составе или в способе питания. Так, представители многих отделов водорослей способны при отсутствии света и избытке органических веществ переходить к питанию органическими соединениями мертвых тел или экскрементов животных.

Для водорослей, обитающих в водных биотопах, движение воды играет огромную роль. Движение водных масс обеспечивает приток питательных веществ и удаление продуктов жизнедеятельности водорослей. В любых континентальных и морских водоемах существует относительное движение водных масс, поэтому почти все водоросли водоемов – обитатели текучих вод. Исключение составляют лишь водоросли, развивающиеся в особо крайних условиях (в пустотах скал, толще льда и пр.).

Водорослям свойственны очень широкие диапазоны температурной устойчивости. Некоторые их виды способны существовать как в горячих источниках, температура которых близка к температуре кипения воды, так и на поверхности льда и снега, где температуры колеблются около 0° С.

По отношению к температуре среди водорослей выделяют: эвритермные виды , существующие в широком температурном диапазоне (например, зеленые водоросли из порядка Oedogoniales, стерильные нити которых можно найти в мелких водоемах с ранней весны до поздней осени), и стенотермные , приспособленные к очень узким, иногда экстремальным температурным зонам. К стенотермным относятся, например, криофильные (холодолюбивые) водоросли, растущие только при температуре, близкой к 0° С и термофильные (теплолюбивые) водоросли, не способные существовать при температурах ниже 30° С.

Температура определяет географическое распространение водорослей, развивающихся в водной среде. В целом, за исключением широко распространенных эвритермных видов, в распространении водорослей наблюдается географическая зональность: конкретные таксоны морских планктонных и бентосных водорослей приурочены к определенным географическим поясам. Так, крупные бурые водоросли (Macrocystis) доминируют в северных морях. По мере продвижения к югу все более заметную роль начинают играть красные водоросли, а бурые отходят на второй план. В фитопланктоне тропических вод чрезвычайно богато представлены динофитовые и золотистые водоросли. В северных морях в фитопланктоне господствуют диатомовые водоросли. Температура оказывает влияние и на вертикальное распределение планктонных и бентосных водорослей. Здесь она воздействует в основном косвенным образом, ускоряя или замедляя темпы роста отдельных видов, что приводит к их вытеснению другими видами, растущими более интенсивно в данном температурном режиме.

Водоросли, входя в состав экосистем, связаны с остальными их компонентами множественными связями. Претерпеваемые водорослями прямые и косвенные воздействия, обусловленные жизнедеятельностью других организмов, относят к биотическим факторам.

В большинстве случаев в экосистеме водоросли выступают как продуценты органического вещества. Поэтому важнейшим фактором, ограничивающим развитие водорослей в конкретной экосистеме, является наличие животных, существующих за счет поедания водорослей.

Различные виды водорослей способны оказывать воздействие друг на друга, путем выделения химических веществ во внешнюю среду (такое взаимодействие растений называется аллелопатией ). Иногда это является препятствием для их совместного существования.

У некоторых видов водорослей могут складываться конкурентные отношения друг с другом за места обитания.

Человек оказывает значительное воздействие на природные экосистемы, что делает антропогенный фактор весьма существенным для развития водорослей. Прокладывая каналы и сооружая водохранилища, человек создает новые местообитания для водных организмов, нередко принципиально отличающиеся от водоемов данного региона по гидрологическому и тепловому режиму. Сбросы сточных вод нередко приводят к обеднению видового состава и гибели водорослей или к массовому развитию отдельных видов. Первое происходит при сбросе токсичных вод, второе – при обогащении водоема биогенными веществами (особенно соединениями азота и фосфора). Следствием неумеренного сброса биогенных веществ в водоем может быть его эвтрофикация, которая приводит к бурному развитию водорослей («цветение воды»), дефициту кислорода, замору рыб и других водных животных. На водоросли, особенно аэрофитные и почвенные, могут оказывать влияние и атмосферные выбросы токсичных промышленных отходов. Очень часто последствия вмешательства человека в жизнь экосистем имеют необратимый характер.

Экологические группы водорослей.

Водоросли распространены по всему земному шару и встречаются в различных водных, наземных и почвенных биотопах. Известны разнообразные экологические группы этих организмов: 1) планктонные водоросли; 2) нейстонные водоросли; 3) бентосные водоросли; 4) наземные водоросли; 5) почвенные водоросли; 6) водоросли горячих источников; 7) водоросли снега и льда; 8) водоросли соленых водоемов; 9) водоросли, существующие в известковом субстрате.

Водоросли водных местообитаний.

Планктонные водоросли.

Планктон – это совокупность организмов, населяющих толщу воды континентальных и морских водоемов и не способных противостоять переносу течениями (т.е. как бы парящих в воде). В состав планктона входят фито-, бактерио- и зоопланктон.

Фитопланктоном называют совокупность свободноплавающих в толще воды мелких, преимущественно микроскопических растений, основную массу которых составляют водоросли. Фитопланктон населяет только эвфотическую зону водоемов (поверхностный слой воды с достаточной для фотосинтеза освещенностью).

Планктонные водоросли обитают в самых разнообразных водоемах – от маленькой лужи до океана. Их нет лишь в водоемах с резко аномальным режимом, в том числе в термальных (при температуре воды выше +80° С и заморных (зараженных сероводородом) водоемах, в чистых приледниковых водах, не содержащих минеральных питательных веществ, а также в пещерных озерах. Суммарная биомасса фитопланктона невелика по сравнению с биомассой зоопланктона (соответственно 1,5 и более 20 млрд. т), но из-за быстрого размножения его продукция в Мировом Океане составляет около 550 млрд. тонн в год, что почти в 10 раз больше суммарной продукции всего животного населения океана.

Фитопланктон – основной продуцент органического вещества в водоемах, за счет которого существуют водные гетеротрофные животные и некоторые бактерии. Фитопланктон является начальным звеном большинства пищевых цепей в водоеме: им питаются мелкие планктонные животные, которыми питаются более крупные. Поэтому в районах наибольшего развития фитопланктона обильны зоопланктон и нектон.

Состав и экология отдельных представителей водорослевого фитопланктона в разных водоемах чрезвычайно разнообразны. Общее число видов фитопланктона во всех морских и внутренних водоемах достигает 3000.

Обилие и видовой состав фитопланктона зависит от комплекса рассмотренных выше факторов. В связи с этим видовой состав планктонных водорослей в разных водоемах (и даже в одном и том же водоеме, но в разное время года) не одинаков. Он зависит от физического и химического режима в водоеме. В каждый сезон года преобладающее развитие получает одна из групп водорослей (диатомовые, синезеленые, золотистые, эвгленовые, зеленые и некоторые другие), причем нередко господствует всего один вид той или иной группы. Особенно это выражено в пресноводных водоемах.

Во внутренних водоемах существует гораздо большее разнообразие экологических условий по сравнению с морскими водоемами, что определяет и значительно большее разнообразие видового состава и экологических комплексов пресноводного фитопланктона по сравнению с морским. Одной из существенных особенностей пресноводного фитопланктона является обилие в нем временно планктонных водорослей. Ряд видов, которые принято считать типично планктонными, в прудах и озерах имеют донную или перифитонную (прикрепление к какому-либо предмету) фазу в своем развитии.

Морской фитопланктон состоит в основном из диатомовых и динофитовых водорослей. Хотя морская среда на значительных пространствах относительно однородна, в распределении морского фитопланктона однородности не наблюдается. Различия по видовому составу и численности нередко выражены даже на сравнительно небольших акваториях морских вод, но особенно четко они отражаются в крупномасштабной географической зональности распределения. Здесь проявляется действие основных факторов среды: солености воды, температуры, освещенности и содержания питательных веществ.

Планктонные водоросли обычно имеют специальные приспособления к обитанию в толщи воды во взвешенном состоянии. У одних видов это разного рода выросты и придатки тела – шипы, щетинки, роговые отростки, перепонки, парашюты; другие образуют полые или плоские колонии и обильно выделяют слизь; третьи накапливают в своем теле вещества, удельный вес которых меньше удельного веса воды (капли жира у диатомовых и некоторых зеленых водорослей, газовые вакуоли у синезеленых). Эти образования гораздо сильнее развиты у морских фитопланктеров, чем у пресноводных. Еще одним из таких приспособлений являются мелкие размеры тела планктонных водорослей.

Нейстонные водоросли.

Совокупность морских и пресноводных организмов, обитающих у поверхностной пленки воды, прикрепляющихся к ней или передвигающихся по ней называется нейстоном. Нейстонные организмы обитают как в мелких водоемах (прудах, заполненных водой ямах, небольших заливах озер), так и в крупных, в том числе в морях. В отдельных случаях они развиваются в таком количестве, что покрывают воду сплошной пленкой.

В состав нейстона входят одноклеточные водоросли, входящие в состав разных систематических групп (золотистые, эвгленовые, зеленые, отдельные виды желтозеленых и диатомовых). Некоторые нейстонные водоросли имеют характерные приспособления для существования у поверхности воды (например, слизистые или чешуйчатые парашюты, удерживающие их на поверхностной пленке).

Бентосные водоросли.

К числу бентосных (донных) водорослей относятся водоросли, приспособленные к существованию в прикрепленном или неприкрепленном состоянии на дне водоемов и на разнообразных предметах, живых и мертвых организмах, находящихся в воде.

Преобладающими бентосными водорослями континентальных водоемов являются диатомовые, зеленые, синезеленые и желтозеленые многоклеточные (нитчатые) водоросли, прикрепленные или неприкрепленные к субстрату.

Основные бентосные водоросли морей и океанов – бурые и красные, иногда зеленые макроскопические прикрепленные слоевищные формы. Все они могут обрастать мелкими диатомовыми, синезелеными и другими водорослями.

Иногда водоросли, растущие на предметах, введенных в воду человеком (суда, плоты, буи) относят к перифитону . Выделение этой группы обосновывается тем, что входящие в ее состав организмы (водоросли и животные) живут на предметах движущихся или обтекаемых водой. Кроме того, эти организмы удалены от дна и, следовательно, находятся в условиях иного светового и температурного режимов, а также в других условиях поступления биогенных веществ.

Возможность произрастания бентосных водорослей в конкретных местообитаниях определяется как абиотическими, так и биотическими факторами. Среди последних существенную роль играет конкуренция с другими водорослями и присутствие животных, питающихся водорослями (морских ежей , брюхоногих моллюсков , ракообразных , рыб). Воздействие биотических факторов приводит к тому, что отдельные виды водорослей растут далеко не на всякой глубине и не во всяких водоемах с подходящим световым и гидрохимическим режимом.

К абиотическим факторам относятся свет, температура, а также содержание в воде биогенных и биологически активных веществ, кислорода и неорганических источников углерода. Очень важна скорость поступления этих веществ в слоевище, что находится в зависимости от концентрации веществ и скорости движения воды.

Бентосные водоросли, растущие в условиях движения воды, получают преимущества по сравнению с водорослями, растущими в малоподвижных водах. Один и тот же уровень фотосинтеза может быть достигнут у них при меньшей освещенности, что способствует росту более крупных слоевищ; движение воды предотвращает оседание на скалы и камни илистых частиц, которые мешают закреплению зачатков водорослей, а также смывает с поверхности грунта питающихся водорослями животных. К тому же, несмотря на то, что при сильном течении или сильном прибое происходит повреждение слоевищ водорослей или отрыв их от грунта, движение воды все же не препятствует поселению микроскопических водорослей и микроскопических стадий крупных водорослей. Поэтому места с интенсивным движением воды (в морях это проливы с течениями, прибрежные участки прибоя, в реках – камни на перекатах) отличаются пышным развитием бентосных водорослей.

Влияние движения воды на развитие бентосных водорослей особо ощутимо в реках, ручьях, горных потоках. В этих водоемах выделяется группа бентосных организмов, предпочитающих места с постоянным течением. В озерах, где не бывает сильных течений, основное значение приобретает волновое движение. В морях волны также оказывают значительное влияние на жизнь бентосных водорослей, в частности на их вертикальное распределение.

В северных морях на распространение и численность бентосных водорослей оказывает влияние лед. Заросли водорослей могут быть уничтожены (стерты) движением ледников. Поэтому, например, в Арктике многолетние водоросли легче всего найти у берега среди валунов и выступов скал, препятствующих движению льда.

Интенсивному развитию бентосных водорослей способствует также умеренное содержание в воде биогенных веществ. В пресных водах такие условия создаются в неглубоких прудах, в прибрежной зоне озер, в речных заводях, в морях – в мелких заливах. Если в таких местах существует достаточное освещение, твердые грунты и слабое движение воды, то создаются оптимальные условия для жизни фитобентоса. При отсутствии движения воды и ее недостаточном обогащении биогенными веществами, бентосные водоросли растут плохо.

Водоросли горячих источников.

Водоросли, выдерживающие высокие температуры, называются термофильными . В природе они поселяются в горячих источниках, гейзерах и вулканических озерах. Нередко они обитают в водах, которые кроме высокой температуры характеризуются повышенным содержанием солей или органических веществ (сильно загрязненные горячие сточные воды заводов, фабрик, электростанций или атомных станций).

Предельные температуры, при которых удавалось находить термофильные водоросли, судя по разным источникам, колеблются от 52 до 84° С. Всего обнаружено около 200 видов термофильных водорослей, однако видов, живущих только при высоких температурах, среди них сравнительно немного. Большинство из них способно выдерживать высокие температуры, но обильнее развиваются при обычных температурах. Типичными обитателями горячих вод являются синезеленые, в меньшей степени – диатомовые и некоторые зеленые водоросли.

Водоросли снега и льда.

Водоросли снега и льда составляют подавляющее большинство организмов, поселяющихся на замерзших субстратах (криобиотопах). Общее число видов водорослей, обнаруженных на криобиотопах, достигает 350, но истинных криофилов, способных вегетировать только при температурах, близких к 0° С, значительно меньше: немногим более 100 видов. Это микроскопические водоросли из которых подавляющее большинство относится к зеленым водорослям (около 100 видов); несколькими видами представлены синезеленые, желтозеленые, золотистые, пирофитовые и диатомовые водоросли. Все эти виды обитают в поверхностных слоях снега или льда. Их объединяет способность выдерживать замерзание без нарушения тонких клеточных структур и затем, при оттаивании, быстро возобновлять вегетацию, используя минимальное количество теплоты. Лишь немногие из них имеют стадии покоя, большинство лишены каких-либо специальных приспособлений для перенесения низких температур.

Развиваясь в массовом количестве, водоросли способны вызывать зеленое, желтое, голубое, красное, коричневое, бурое или черное «цветение» снега и льда.

Водоросли соленых водоемов.

Эти водоросли вегетируют при повышенной концентрации в воде солей, достигающей 285 г/л в озерах с преобладанием поваренной соли и 347 г/л в глауберовых (содовых) озерах. По мере увеличения солености количество видов водорослей уменьшается, очень высокую соленость переносят лишь немногие из них. В крайне засоленных (гипергалинных) водоемах преобладают одноклеточные подвижные зеленые водоросли. Нередко они вызывают красное или зеленое «цветение» соленых водоемов. Дно гипергалинных водоемов иногда сплошь покрыто синезелеными водорослями. они играют большую роль в жизни соленых водоемов. Сочетание органической массы, образуемой водорослями, и большого количества растворенных в воде солей обуславливает ряд своеобразных биохимических процессов, свойственных этим водоемам. Например, хлороглея сарциноидная (Chlorogloea sarcinoides) из синезеленых, в огромных количествах развивающаяся в некоторых соленых озерах, а также ряд других массово растущих водорослей, участвуют в процессе образования лечебных грязей.

Водоросли вневодных местообитаний.

Аэрофильные водоросли.

Аэрофильные водоросли непосредственно контактируют с окружающим их воздухом. Типичное местообитание таких водорослей – поверхность различных внепочвенных твердых субстратов, не оказывающих на поселенцев ясно выраженного физико-химического воздействия (скалы, камни, кора деревьев и т.д.). В зависимости от степени увлажнения, их подразделяют на две группы: воздушные водоросли , обитающие в условиях только атмосферного увлажнения и, следовательно, испытывающие постоянную смену увлажнения и высыхания; и водно-воздушные водоросли , подвергающиеся постоянному орошению водой (брызгами водопада, прибоя и т.д.).

Условия существования водорослей этих сообществ очень своеобразны и характеризуются, прежде всего, частой и резкой сменой температуры и влажности. Днем аэрофильные водоросли сильно прогреваются, ночью охлаждаются, зимой промерзают. Смене условий увлажнения особенно подвержены воздушные водоросли, поскольку они часто вынуждены переходить из состояния избыточного увлажнения (например, после ливня) в состояние минимальной влажности (в засушливые периоды), когда они высыхают настолько, что могут быть растерты в порошок. Водно-воздушные водоросли живут в условиях относительно постоянного увлажнения, однако и они испытывают значительное колебание этого фактора. Например, водоросли, живущие на скалах, орошаемых брызгами водопадов, в летнее время, когда сток существенно уменьшается, испытывают дефицит влаги.

К таким неблагоприятным условиям существования приспособилось сравнительно немного видов (ок. 300). Аэрофильные водоросли представлены микроскопическими водорослями из отделов синезеленых, зеленых и, в значительно меньшей степени, диатомовых и красных водорослей.

При развитии аэрофильных водорослей в массовом количестве они обычно имеют вид порошкообразных или слизистых налетов, войлокообразных масс, мягких или твердых пленок или корочек. Особенно обильны разрастания водорослей на поверхности влажных скал. Они образуют пленки и наросты различного цвета. Как правило, здесь обитают виды, снабженные толстыми слизистыми обвертками. В зависимости от интенсивности освещения, слизь бывает окрашена более или менее интенсивно, что определяет цвет разрастаний. Они могут быть ярко-зеленые, золотистые, бурые, охристые, лиловые, коричневые или почти черные в зависимости от образующих их видов.

Таким образом, аэрофильные сообщества водорослей очень разнообразны и возникают как при вполне благоприятных, так и в экстремальных условиях. Их внешние и внутренние приспособления к такому образу жизни разнообразны и сходны с обнаруживаемыми у почвенных водорослей, особенно развивающихся на поверхности почвы.

Эдафофильные водоросли.

Основной жизненной средой эдафофильных водорослей является почва. Типичные их местообитания – поверхность и толща почвенного слоя, оказывающая на водоросли определенное физико-химическое воздействие. В зависимости от местонахождения водорослей и их образа жизни в пределах этого типа различают три группы сообществ. Это наземные водоросли , массово развивающиеся на поверхности почвы в условиях атмосферного увлажнения; водно-наземные водоросли , массово разрастающиеся на поверхности почвы, постоянно пропитанной водой (в эту группу включаются и водоросли пещер) и почвенные водоросли , населяющие почвенную толщу. Типичные условия – жизнь среди почвенных частиц под влиянием среды, очень сложной по комплексу факторов.

Почва как биотоп имеет сходство с водными и воздушными местообитаниями: в ней есть воздух, причем он насыщен водяными парами, что обеспечивает дыхание атмосферным воздухом без угрозы высыхания. Однако почва кардинально отличается от вышеназванных биотопов своей непрозрачностью. Этот фактор оказывает решающее воздействие на развитие водорослей. Интенсивное развитие водорослей как фототрофных организмов возможно только там, куда проникает свет. В целинных почвах это поверхностный слой почвы толщиной до 1 см, однако в таких почвах водоросли встречаются и на гораздо большей глубине (до 2 м). Это объясняется способностью некоторых водорослей в темноте переходить к гетеротрофному питанию. Многие водоросли сохраняются в почве в состоянии покоя.

Для выживания почвенные водоросли должны иметь способность переносить неустойчивую влажность, резкие колебания температуры и сильную инсоляцию. Эти свойства обеспечиваются у них рядом морфологических и физиологических особенностей (более мелкие размеры по сравнению с водными формами этих же видов, обильное образование слизи). О поразительной жизнеспособности этих водорослей говорит следующее наблюдение: когда почвенные водоросли, хранящиеся десятки лет в воздушно-сухом состоянии в почвенных образцах поместили в питательную среду, они начали развиваться. Почвенные водоросли (преимущественно синезеленые) обладают устойчивостью против ультрафиолетового и радиоактивного излучения.

Характерной чертой почвенных водорослей является способность быстро переходить из состояния покоя к активной жизнедеятельности и наоборот. Они также способны переносить разные колебания температуры почвы. Диапазон выживаемости ряда видов лежит в пределах от –20° до +84° С. Известно, что наземные водоросли составляют значительную часть растительности Антарктиды. Они окрашены почти в черный цвет, поэтому температура их тела оказывается выше температуры окружающей среды. Почвенные водоросли являются также важными компонентами биоценозов аридной зоны, где почва в летнее время нагревается до 60–80° С.

Перечисленные свойства почвенных водорослей позволяют им обитать в самых неблагоприятных местообитаниях. Этим объясняется их широкое распространение и быстрота разрастаний даже при кратковременном появлении необходимых условий.

Подавляющее большинство почвенных водорослей – микроскопические формы, однако нередко их можно увидеть на поверхности почвы невооруженным глазом. Массовое развитие микроскопических форм вызывает позеленение склонов оврагов и обочин лесных дорог, «цветение» пахотных почв.

Число всех видов почвенных водорослей приближается к 2000. Они представлены синезелеными, зелеными, диатомовыми и желтозелеными водорослями.

Литофильные водоросли.

Основной жизненной средой литофильных водорослей служит окружающих их непрозрачный плотный известковый субстрат. Как правило, они обитают в глубине твердых пород определенного химического состава, окруженных воздухом (т.е. вне воды) или погруженных в воду. Различают две группы литофильных сообществ: сверлящие водоросли и туфообразующие водоросли.

Сверлящие водоросли – организмы, внедряющиеся внутрь известкового субстрата. Эти водоросли по количеству видов немногочисленны, однако распространены чрезвычайно широко: от холодных вод севера до постоянно теплых вод тропиков. Обитают они как в континентальных, так и в морских водоемах, у поверхности воды и на глубине более 20 м. Поселяются сверлящие водоросли на известковых скалах, камнях, известковых раковинах животных, кораллах, пропитанных известью крупных водорослях и т.д. Все сверлящие водоросли – микроскопические организмы. Поселившись на поверхности известкового субстрата, они постепенно в него внедряются за счет выделения органических кислот, растворяющих находящуюся под ними известь. Внутри субстрата водоросли разрастаются, образуя при этом многочисленные каналы, при помощи которых они сохраняют связь с наружной средой.

Туфообразующие водоросли организмы, отлагающие вокруг своего тела известь и обитающие в периферических слоях отлагаемой ими среды, в пределах, доступных для диффузии света и воды. Количество выделяемой водорослями извести различно. Некоторые виды выделяют ее в очень небольших количествах, в виде мелких кристаллов она располагается между особями или образует футляры вокруг клеток и нитей. Другие виды выделяют известь настолько обильно, что постепенно оказываются совершенно погруженными в отложения, что, в конце концов, приводит к их гибели.

Туфообразующие водоросли встречаются в воде и в наземных местообитаниях, в морях и пресных водоемах, в холодных и горячих водах.

Сожительство водорослей с другими организмами

Особый интерес представляют случаи сожительства водорослей с другими организмами. Чаще всего водоросли используют живые организмы как субстрат, наравне с камнями, бетонными и деревянными сооружениями и т.п. По характеру субстрата, на котором поселяются водоросли обрастаний, среди них выделяют эпифиты , поселяющиеся на растениях, и эпизоиты , живущие на животных.

Водоросли могут жить также в тканях других организмов: как внеклеточно (в слизи, межклеточниках водорослей, в оболочках мертвых клеток), так и внутриклеточно. Такие водоросли называются эндофитами . Для них характерно наличие более или менее постоянных и прочных связей между партнерами. Эндофитами могут быть самые разнообразные водоросли, но наиболее многочисленны эндосимбиозы одноклеточных зеленых и желтозеленых водорослей с одноклеточными животными.

Среди симбиозов, образуемых водорослями, наибольший интерес представляет их симбиоз с грибами, известный под названием лишайникового симбиоза , в результате которого возникла своеобразная группа растительных организмов, получившая название «лишайники». Этот симбиоз показывает уникальное биологическое единство, которое привело к появлению принципиально нового организма. Вместе с тем каждый партнер лишайникового симбиоза сохраняет черты той группы организмов, к которой он относится. Лишайники представляют единственный доказанный случай возникновения нового организма в результате симбиоза двух.

Водоросли играют огромную роль в природе. Они являются основными производителями органической пищи и кислорода в водных экосистемах Земли, и, кроме того, играют большую роль в общем балансе кислорода на планете. В наземных местообитаниях почвенным водорослям наряду с другими микроорганизмами принадлежит роль пионеров растительности. Водоросли учувствуют в процессах формирования примитивных почв на субстратах, лишенных почвенного покрова, а также в процессах восстановления почв, нарушенных сильными загрязнениями. Водоросли принимают участие в строительстве коралловых рифов – наиболее грандиозных геологических образований, созданных живыми организмами. Геохимическая роль водорослей, прежде всего, связана с круговоротом в природе кальция и кремния.

Велика историческая роль водорослей. Возникновение кислородосодержащей атмосферы, выход живых существ на сушу и развитие аэробных форм жизни, доминирующих ныне на нашей планете – все это результаты деятельности древнейших фотосинтезирующих организмов – синезеленых водорослей. Массовое развитие водорослей в прошлые геологические эпохи привело к образованию мощных толщ горных пород. От водорослей произошли растения, заселившие сушу.

Трудно переоценить значение водорослей и для жизни человека. Водорослям отводят важную роль в решении ряда глобальных проблем, волнующих все человечество, в том числе продовольственной, энергетической, охраны окружающей среды, освоения недр Земли и богатств Мирового океана, изыскания новых источников промышленного сырья, строительных материалов, фармацевтических препаратов, биологически активных веществ и новых объектов биотехнологии.

Наталья Новоселова



Палеонтологические данные о водорослях настолько скудны, что на основании их совершенно невозможно нарисовать сколько-нибудь стройную картину эволюции этих растений и для этого приходится пользоваться почти исключительно методом сравнения и сопоставления ныне живущих форм. При этом принимаются в расчет разнообразные признаки - как морфологические, так и физиологические. Так, большое значение в систематике водорослей имеют их пигменты, особенности строения и цикла развития, наличие или отсутствие подвижных жгутиковых стадий и т. п. Следует также напомнить, что водоросли - сборное понятие, объединяющее несколько самостоятельных типов растительного мира, и поэтому вопрос о происхождении водорослей должен ставиться раздельно по отношению к различным типам и далеко не для всех из них он может быть решен с одинаковой степенью достоверности.

Большинство исследователей полагает, что жизнь впервые возникла в воде и лишь впоследствии перешла на сушу. Примитивность строения многих водорослей и обитание их в водной среде дает поэтому основание утверждать, что водоросли - наиболее древние зеленые растения, от которых произошла вся наземная растительность. Иными словами, мы можем сказать, что первыми зелеными растениями на земле были водоросли. Поэтому, если ставить вопрос, от каких растений произошли водоросли в давно прошедшие эпохи, необходимо сразу же отметить, что это могли быть только какие-то бесцветные организмы, более простые по своему строению, чем современные водоросли. Однако никаких ископаемых остатков их не сохранилось.

Каковы же были эти первичные организмы и какая форма обмена веществ была им свойственна? По этому вопросу существуют две основные точки зрения. Первая по времени точка зрения сводится к тому, что первичные организмы должны были обладать способностью строить вещества своего тела из неорганических веществ, получаемых из окружающей среды (автотрофное питание). Необходимую для такого синтеза энергию они могли черпать из производимых ими химических реакций (хемоавтотрофное питание), так как световая энергия не могла быть используема из-за отсутствия соответствующих пигментов, как это имеет место и у современных хемосинтезирующих бактерий. Такое воззрение основывается на предположении, что в самом начале жизни на земле не было изобилия органических веществ, которыми могли бы питаться первые бесцветные организмы.

Согласно другой точке зрения, разработанной главным образом акад. А. И. Опариным, появлению первых организмов на земле, наоборот, должно было предшествовать образование массы органических веществ, за счет которых они и питались (гетеротрофное питание). Последнее воззрение является во многих отношениях более обоснованным и правильным. Можно полагать, что от таких первичных бесцветных гетеротрофов произошли, с одной стороны, многие бактерии * - в преобладающем большинстве также бесцветные и не способные к самостоятельному синтезу органических веществ, - а, с другой - зеленые растения, в первую очередь, водоросли.

* (Тип бактерий в целом, вероятно, представляет собой разнородную по своему происхождению группу. Некоторые бактерии (тиобактерии) скорее всего произошли от синезеленых водорослей в результате вторичной утери ими пигмента. )

Не подлежит сомнению, что хлорофилл и сопровождающие его пигменты, равно как и процесс фотосинтеза в той форме, в которой мы находим его у современных водорослей, настолько сложны, что их появлению должен был предшествовать длительный этап эволюции. О возможных путях этой эволюции известное представление может дать знакомство с некоторыми бактериями.

Как известно, среди ныне живущих бактерий, наряду с бесцветными, есть и окрашенные формы. У большинства из них вырабатываемые ими пигменты выделяются из клетки наружу и не участвуют в отправлении основных физиологических функций. Многие из этих пигментных бактерий питаются гетеротрофно. Однако существуют и такие, у которых пигмент остается внутри клеток, будучи связан с их протоплазмой. Очевидно, что в последнем случае отношение этих бактерий к свету должно быть иным, чем у бесцветных форм, так как свет, поглощаемый пигментами, может вызывать в клетке различные фотохимические реакции. И в настоящее время установлено, что у пурпурных и зеленых бактерий имеет место процесс фотосинтеза, который протекает несколько иначе чем у содержащих хлорофилл зеленых растений.

Хлорофилл, характерный для подавляющего большинства водорослей разных типов, представляет собой пигмент, переводящий световую энергию в химическую. На основании сказанного выше, можно думать, что формы, переходные между первичными бесцветными гетеротрофами и первичными зелеными фотосинтетиками, первоначально питались готовыми органическими веществами. Лишь впоследствии, благодаря выработке пигмента, остающегося в клетке, и связанной с этим возможности использовать световую энергию для синтетических процессов, гетеротрофное питание могло заместиться фототрофным - питанием органическими веществами, синтезируемыми из минеральных за счет световой энергии солнца. Так возникла и в дальнейшем все более совершенствовалась та форма питания, которая определила собой основное направление эволюции растительного мира на основе принципиально нового отношения к факторам внешней среды.

Происшедшие от первичных бесцветных гетеротрофов бактерии оказались слепой ветвью в развитии, не приведшей к появлению сколько-нибудь сложно построенных форм, но отличающейся, однако, большим разнообразием физиологических отправлений * . Напротив, первичные водоросли - как могут быть названы первые зеленые фотосинтетики - дали начало всему многообразию водорослей, явившихся, в свою очередь, родоначальниками высших растений. Как же могли произойти от них современные тины водорослей и какова связь между ними?

* (Способность некоторых бактерий к хемоавтотрофному питанию представляет собой скорее всего вторичное явление и характеризует боковое ответвление главного пути эволюции органического мира (акад. А. И. Опарин). )

Мы уже указывали, что в ряду признаков, кладущихся в основу системы водорослей, большое значение имеет наличие или отсутствие жгутиковых стадий. Большинство водорослей в цикле своего развития имеет подобные стадии или явно имело их в прошлом и утратило вторично. Однако известны два типа водорослей - синезеленые (Cyanophyta) и красные или багряные (Rhodophyta) - в отношении которых есть все основания полагать, что подобные стадии отсутствуют у них первично. У красных водорослей эта их особенность сочетается с весьма своеобразным половым процессом и - у многих форм - со сложной дифференциацией их талломов. С другой стороны, у синезеленых водорослей мы находим также и ряд других признаков, указывающих на их примитивность: просто построенное тело и - что особенно важно - полное отсутствие полового процесса и морфологически оформленных ядер и хроматофоров. Все эти особенности, несомненно, являются здесь первичными и свидетельствуют о значительной древности этого типа, не давшего, так же как и бактерии, сколько-нибудь сложных форм * . Древность происхождения синезеленых водорослей подтверждается и палеонтологическими данными (достоверные ископаемые остатки их обнаружены в верхнегуронских пластах протерозойской эры). Можно думать, что синезеленые и являются сохранившимися до наших дней сравнительно мало изменившимися потомками первичных водорослей.

* (Объединение синезеленых водорослей с бактериями в один тип дробянок (Schizophyta) на основании, главным образом, отсутствия ясной дифференциации протопласта на цитоплазму и ядро, не может считаться обоснованным, так как между ними существуют важные различия. Строение клетки тех и других далеко не одинаково. Типичные бактерии имеют жгутиковые стадии. Есть и ряд других существенных различий. Сказанное не исключает того, что некоторые бактерии могли произойти непосредственно от сине зеленых. )

Далеко не ясен вопрос о происхождении красных водорослей. Кроме отсутствия в цикле их развития жгутиковой стадии, с синезелеными водорослями их сближает сходство набора пигментов, сходное строение плазмодесм и некоторые другие, главным образом, биохимические признаки (запасный углевод гликоген синезеленых, повидимому, родственен "крахмалу багрянок" красных; слизь, образуемая некоторыми синезелеными, кажется химически иногда довольно близкой к слизи красных). С другой стороны, наличие в их клетках типичных ядер и хроматофоров * , сложный оогамный половой процесс и морфологическое расчленение слоевища у высших представителей говорит как будто против непосредственной связи этого типа с синезелеными водорослями, хотя исследования последнего времени показали наличие значительного морфологического сходства между некоторыми примитивными представителями порядка гониотриховых из красных водорослей (Asterocytis, Goniotrichum) и порядка тубиелловых из синезеленых водорослей (Tubiella, Cyanothrix).

* (Интересно, однако, что запасные углеводы образуются здесь не в хроматофорах (как это обычно характерно для зеленых водорослей), а в цитоплазме, обыкновенно у краев хроматофоров, что, может быть, указывает на известную примитивность этих органоидов у красных водорослей. )

В настоящее время, повидимому, правильнее всего считать, что красные водоросли имели когда-то общего предка с синезелеными, строение которого в настоящее время обрисовать невозможно, но с тех пор проделали длинный путь эволюции, являясь весьма древней группой (ископаемые остатки известны с кембрийского периода палеозоя), не давшей переходов к другим растениям.

Возвращаясь к нашей исходной группе первичных водорослей, мы должны, следовательно, отметить, что, дав боковую ветвь к синезеленым и красным водорослям, она свое основное развитие проделала по другому пути. Очевидно, что в боковой ветви, несмотря на все морфологическое разнообразие составляющих ее водорослей, не появилось таких форм, которые в эволюционном отношении были бы прогрессивными. Такой эволюционно-прогрессивной формой оказалось строение растения в виде хлорофиллоносного подвижного жгутикового организма (монадная структура), возникновение которого знаменовало собой весьма важный этап в эволюции растительного мира, так как все другие типы водорослей (кроме синезеленых и красных) прямо или косвенно произошли от жгутиконосных предков. Последние, таким образом, явились как бы центром расхождения для многообразных водорослей. При этом нужно только помнить, что современные организмы монадного строения сами являются продуктом длительной эволюции и, несомненно, построены много сложнее чем те первичные жгутиконосцы, которые явились предками большинства водорослей.

Для некоторых типов (эвгленовые) до сих пор, за немногими исключениями, известна только монадная организация - за пределы ее в своей эволюции они не вышли. Однако другие типы выработали и иные структуры, основные формы которых были рассмотрены нами в главе I под именем ступеней морфологической дифференциации тела водорослей.

Усложнение строения и переход к многоклеточности, сначала в его простейшей форме нитчатого слоевища, а потом и в более сложных проявлениях, - были связаны с утерей подвижности в вегетативном состоянии. Исходная монадная структура во многих случаях сохранилась только у репродуктивных клеток (зооспоры, гаметы), а иногда исчезла и здесь (замена зооспор апданоспорами; переход от копуляции подвижных гамет к конъюгации протопластов вегетативных клеток). Однако именно наличие подвижных стадий у многих неподвижных в вегетативном состоянии водорослей и служит доказательством их происхождения от флагеллатообразных предков.

В высшей степени замечателен тот факт, что подвижные репродуктивные клетки водорослей, относящихся к разным типам, воспроизводят основные признаки, присущие одноклеточным их представителям, нормально характеризующимся монадной структурой. Так, зооспоры нитчатых зеленых крайне схожи с одноклеточными подвижными зелеными водорослями, зооспоры различных желтозеленых водорослей своими двумя неравными жгутами и окраской имитируют монадных одноклеточных представителей этого типа, зооспоры нитчатых золотистых водорослей весьма напоминают монадных Chrysophyta (рис. 65) и т. п.

Это указывает на то, что эти типы произошли от разных жгутиконосцев, характерные особенности которых и до сих пор сохранились у репродуктивных клеток водорослей, утративших в вегетативном состоянии свою подвижность. В процессе их эволюции выработались разнообразные новые структуры, в то время как подвижная стадия все более сокращалась, сохраняя, однако, черты родоначальной формы.

Интересно далее, что сопоставление различных типов показывает известный параллелизм в их эволюции, проявляющийся в наличии у них схожих ступеней морфологической дифференциации. Так, у зеленых водорослей мы встречаем все отмеченные выше основные ступени кроме ризоподиальной. У желтозеленых водорослей они также налицо, включая и последнюю, но отсутствует пластинчатое и гетеротрихальное строение. У золотистых водорослей известны формы структуры амебоидной, монадной, пальмеллоидной и нитчатой. У пирофитовых водорослей - ризоподиальной, монадной, пальмеллоидной, коккоидной и нитчатой. Следует только иметь в виду, что простое перечисление наличных структур еще не характеризует в достаточной мере морфологические особенности данного типа, так как для разных типов преимущественно характерным оказывается различное строение. Так, нитчатая ступень особенно отчетливо выражена в типах зеленых и бурых, слабее у желтозеленых и еще более слабо у золотистых и пирофитовых водорослей, большинство представителей которых характеризуется монадной структурой.

А. Пашер (A. Pascher, 1931), работами которого, главным образом, и обосновано представление о происхождении типов водорослей от разных групп окрашенных жгутиковых, предложил ряд наименований систематических единиц (классов, подклассов, порядков), из которых сразу ясно, какая ступень морфологической дифференциации им свойственна. Для этого при обозначении этих категорий в пределах различных типов применяются одни и те же окончания или приставки, а именно: окончание - "monadineae" ("monadeae", "monadales") выражает монадную организацию, "capsineae" ("capsales") - пальмеллоидную, "coccineae" ("coccales") - коккоидную, Urichineae" ("trichales") - нитчатую, "siphoneae" ("siphonales") - сифональную; амебоидная структура передается приставкой "Rhizo". Так, например, в типе золотистых водорослей имеются классы Chrysomonadineaey Rhizochrysidineae, Chrysocapsineae, Chrysotrichi- neae; в типе желтозелепых водорослей - классы Rhizochloridineae, Heterocapsineae,Heterococcineaef Heterotrichineae, Heterosiphoneae и т. п.

Происхождение разных типов водорослей от различных жгутиконосных предков означает, что родоначальные формы у них неодинаковы. Это не исключает, конечно, того, что последние, в свою очередь, могли произойти от одного общего корня, но никакими сведениями об этом мы не располагаем. Однако есть основания считать, что некоторые типы находятся друг с другом и в прямой связи. Среди водорослей мы встречаем ряд типов, происхождение которых, несомненно, независимо, но, наряду с этим, некоторые типы, повидимому, филогенетически связаны между собой. Для того, чтобы выяснить это, следует остановиться на происхождении каждого типа в отдельности.

Происхождение золотистых водорослей (Chrysophyta) не вызывает сомнений. У них, как мы уже указывали, преобладает монадное строение, и несомненно, что подобные золотистые первичные монады и явились родоначальником всего этого типа в целом.

К золотистым водорослям близки диатомовые (Bacillariophyta) и желтозеленые или разножгутиковые водоросли (Xanthophyta или Heterocontae). Сходство между ними настолько значительно, что А. Пашер (1914, 1921) объединяет даже все эти три группы в одну единицу более высокого ранга, которой и присваивает наименование Chrysophyta, трактуемое им, следовательно, шире, чем это принято в настоящем "Определителе". Следующие главнейшие признаки являются для них общими. 1) Сходство в строении оболочек. Последние всегда (диатомовые) или очень часто (желтозеленые; цисты золотистых водорослей) состоят из двух равных или неравных половинок; а иногда слагаются из множества вдвинутых друг в друга отдельных частей или слоев (Tribonema, Ophiocytium желтозеленых; панцыри некоторых диатомовых, в которых при росте образуются вставочные ободки; домики ряда хризомонад, рис. 66). Кроме того, в оболочках у представителей всех трех типов откладывается кремнезем. 2) Близость пигментов. 3) Отсутствие в клетках крахмала и наличие, в качестве продуктов ассимиляции, жира и лейкозина (особенно характерного для золотистых, но найденного и у некоторых диатомовых и желтозеленых водорослей). 4) Сходство цист хризомонад с так называемыми покоящимися спорами (гипноспорами) некоторых диатомовых (Chaetoceros) и с цистами некоторых желтозеленых водорослей (Chloromeson, рис. 67). Важно также, что типичное для желтозеленых водорослей наличие у подвижных клеток двух неравных жгутов наблюдается и у многих хризомонад (порядок охромонадовых).

Для диатомовых характерна коккоидная структура. Однако у некоторых представителей класса Centricae известны зооспоры * , а в вегетативном состоянии их протопласты иногда имеют пульсирующие вакуоли (Attheya, Rhizosolenia). Это говорит в пользу происхождения диатомовых водорослей от предков монадного строения, каковыми, вероятно, и являлись формы, близкие к хризомонадам, так что палеонтологически сравнительно молодой тип Bacillariophyta (достоверные ископаемые остатки известны лишь начиная с юрского периода) представляет собой скорее всего боковую ветвь золотистых водорослей. Что же касается желтозеленых, то их происхождение от жгутиконосных предков не вызывает сомнений, а отмеченная только что близость к диатомовым и золотистым водорослям указывает на возможность наличия у всех этих трех типов общих родоначальных форм.

* (См. подстрочное примечание выше. )

У пирофитовых водорослей (Pyrrophyta), как отмечено выше, преобладает монадная структура. Этот тип занимает среди водорослей довольно изолированное положение и имеет или независимое происхождение или представляет собой группу, некогда обособившуюся от золотистых водорослей.

Не вполне ясно происхождение бурых водорослей (Phaeophyta), к которым относятся исключительно только многоклеточные формы, имеющие в цикле развития жгутиковую стадию. Филогенетически они, повидимому, связаны с какими-то организмами монадного строения, окрашенными в бурый цвет и, вероятно, близкими к хризомонадам. Возможно, что начало им дали более сложные колонильно-нитчатые хризомонады, уже потерявшие подвижность в вегетативном состоянии. Значительная сложность структуры, присущая многим представителям этого типа, указывает на то, что они являются продуктом длительной и своеобразной эволюции и представляют собой довольно древнюю группу (окаменелые остатки бурых водорослей известны, повидимому, со времен силурийского периода палеозойской эры).

Совершенно независимы в своем происхождении от рассмотренных типов зеленые водоросли (Chlorophyta), ведущие свое начало от зеленых жгутиконосных предков и дающие особенно ясную и полную картину постеленного перехода к более сложным формам, Этот тип относится к числу древнейших, так как уже в силурийских пластах обнаружены сложно построенные его представители (сифональной структуры), тогда как окаменелые остатки более простых форм неизвестны. Зеленые водоросли явились, повидимому, родоначальниками высшей наземной растительности. В пределах этого типа эволюция протекала по разным направлениям и привела к формам различной структуры. В подтипе Conjugatae имела место полная утеря подвижных репродуктивных клеток и переход к конъюгации. Этот подтип представляет собой боковую ветвь эволюционного ствола зеленых водорослей, подобно тому, как диатомовые являются боковой и еще более обособившейся ветвью золотистых водорослей.

Так же, как и пирофитовые, изолированное место среди водорослей занимает тип эвгленовых водорослей (Euglenophyta) - морфологически сравнительно однообразный, но характеризующийся довольно сложным и специализированным строением клеток. Возможно, что эвгленовые некогда произошли от примитивных зеленых водорослей монадной структуры, причем промежуточные формы вымерли.

Трудно сказать что-либо определенное о происхождении харовых водорослей (Charophyta), представляющих собой резко очерченную группу, не обнаруживающую отчетливых филогенетических связей с другими типами. Очевидно, это - боковой ствол зеленых водорослей, давно уже обособившийся от них (окаменелые остатки харовых известны с девонского периода палеозойской эры), причем связующие звенья не сохранились.

Мы видим, таким образом, что вопрос о происхождении водорослей выяснен далеко не полностью и в решении его существует значительное разнообразие точек зрения. То же относится и к системе водорослей. В настоящее время нет единства взглядов на систему водорослей и разные авторы по-разному делят их на таксономические единицы. Принимаемые нами типы водорослей перечислены и кратко охарактеризованы выше. Дальнейшие систематические подразделения этих типов будут приведены в соответствующих выпусках "Определителя".

Происхождение, родственные связи и эволюция водорослей (Ю. Е. Петров)

Вопрос о происхождении и эволюции водорослей очень сложен из-за разнообразия этих растений, особенно их субмикроскопического строения и биохимических признаков. Решение этой проблемы затруднено, кроме того, плохой сохранностью большинства водорослей в ископаемом состоянии и отсутствием связующих звеньев между современными отделами растений в виде организмов промежуточного строения.

Проще всего решается вопрос о происхождении прокариотических (доядерных) водорослей - сине-зеленых, имеющих много общих признаков с фотосинтезирующими бактериями. Вероятнее всего, сине-зеленые водоросли произошли от организмов, близких к пурпурным бактериям и содержащих хлорофилл а.

Относительно происхождения эукариотических (ядерных) водорослей в настоящее время нет единой точки зрения. Существуют две группы теорий, исходящих или из симбиотического, или из несимбиотического их происхождения.

По теории симбиогенеза хлоропласты и митохондрии клеток эукариотических организмов некогда были самостоятельными организмами: хлоропласты - прокариотическими водорослями, митохондрии - аэробными бактериями. Как предполагают, существовало несколько групп прокариотических водорослей, различающихся набором пигментов. В результате захвата амебоидными гетеротрофными эукариотическими организмами аэробных бактерий, и прокариотических водорослей возникли предки современных групп эукариотических водорослей. Некоторые исследователи приписывают симбиотическое происхождение хромосомам и жгутикам.

Теория симбиотического происхождения эукариотических водорослей и др. организмов получила особенно широкое распространение за последнее время. Она основана на давно известных фактах самовоспроизведения упомянутых органоидов клеток и на новых данных об автономности хлоропластов и митохондрий и их биохимическом сходстве с прокариотами. Это сходство выражается в следующем:

1. Хлоропласты и митохондрии, подобно прокариотам, содержат ДНК и РНК; в них находятся рибосомы того же типа, что и у прокарио-тов.

2. Антибиотики, подавляющие рост бактерий, тормозят образование и размножение хлоропластов и митохондрий эукариотических орга-низмов, но не действуют на рост самих клеток и тканей.

3. Механизмы фотосинтеза у сине-зеленых и эукариотических водорослей в значительной мере сходны.

Однако наряду с фактами, свидетельствующими в пользу симбиогенеза эукариотических организмов, имеются данные, говорящие об обратном. Например, система переноса электронов в хлоропластах и набор ферментов, необходимых для образования пигментов, участвующих в фотосинтезе, регулируются генами ядра. Синтез ряда ферментов митохондрий зависит от ядра и цитоплазмы. Если учесть эти и другие факты, хлоропласты и митохондрии оказываются не "автономными", а "полуавтономными". Что касается самовоспроизведения, то оно обнаружено даже у поверхностного (кортикального) слоя инфузорий, признаки которого наследуются в ряду поколений независимо от ядра и цитоплазмы. Это было установлено путем пересадок ядра и цитоплазмы других особей, обладающих кортикальным слоем с иными признаками. Конечно, никак нельзя представить, что кортикальный слой инфузорий некогда был самостоятельным организмом. На водорослях такие эксперименты не проводились.

Автономность хлоропластов и митохондрий в равной мере может свидетельствовать как об их некогда самостоятельном существовании, так и о далеко зашедшем процессе специализации и автономности органоидов клетки. Точно так же и данные о неполной автономности хлоропластов и митохондрий можно с равным успехом принять за доказательство их несимбиотического происхождения или рассматривать как пример утраты симбионтами полной автономности в ходе эволюции. Нам представляется, что частичная или полная автономность органоидов клетки от ядра является необходимым условием нормальной жизнедеятельности эукариотической клетки и своевременного реагирования ее органоидов на изменения окружающей среды. Эукариотические клетки в среднем в 103-104 раз крупнее прокариотических клеток. При полной зависимости органоидов от ядра малейшее нарушение его нормального функционирования, хотя бы на короткий отрезок времени, например при митозе, означало бы нарушение обмена веществ всей клетки.

Не в пользу симбиотического происхождения клеток эукариотических водорослей свидетельствует также отсутствие достаточного сходства в строении хлоропластов и клеток сине-зеленых водорослей - единственных современных прокариотических водорослей. Сейчас существует целый ряд бесцветных одноклеточных организмов, в которых живут в качестве симбионтов явные сине-зеленые водоросли, выполняющие функции хлоропластов и называемые цианеллами. Цианеллы отличаются от свободноживущих сине-зеленых водорослей. Интересно, например, что у симбиотического глаукоцистиса (Glaucocystis nostochinearnm), изученного посредством электронного микроскопа, цианеллы, в отличие от свободноживущих сине-зеленых водорослей, не имеют оболочки, т. е. симбиоз зашел здесь очень далеко. Тем не менее даже в таком "упростившемся" виде цианеллы все же остаются сине-зелеными водорослями и по своей организации и поведению в клетке хозяина решительно не сходны с хлоропластами (подробнее см. раздел "Сожительство водорослей с другими организмами").

Таким образом, существующие ныне данные не позволяют принять теорию симбиогенеза в качестве основы для пересмотра путей возникновения и эволюции эукариотических водорослей.

Если исходить из несимбиотического происхождения эукариотических водорослей, то приходится допустить, что они возникли от предка, общего с сине-зелеными водорослями, имеющего хлорофилл а и фотосинтез с выделением кислорода (рис. 272). Единственным возражением против этого может быть разница в составе клеточной стенки: у сине-зеленых водорослей, так же как и у бактерий, в клеточной стенке имеется муреин. В целом по составу и строению клеточной стенки, а также по реакциям, благодаря которым идет синтез ее веществ, прокариоты существенно отличаются и от животных, и от остальных растений. В случае принятия такого возражения пришлось бы выводить эукариотические водоросли от других организмов. Это значило бы признать, что фотосинтез с участием хлорофилла а и выделением кислорода возникал в ходе эволюции жизни на Земле два раза. Однако это, учитывая множество реакций, осуществляемых в процессе фотосинтеза с участием многих ферментов, представляется менее вероятным, чем смена в ходе эволюции веществ клеточной стенки. У эукариотических водорослей, очевидно, не сразу появилась твердая жесткая клеточная стенка из целлюлозы или других веществ. Наиболее примитивной у эукариотических водорослей, очевидно, следует считать амебоидную форму строения, а клеточная стенка всех современных прокариот имеет жесткую основу. Следовательно, современные фотосинтезирующие прокариоты, т. е. сине-зеленые водоросли,- это боковая, тупиковая ветвь растительной эволюции. Эукариотические водоросли имели с ней лишь общего прокариотического предка, лишенного твердой оболочки.

Первым шагом на пути возникновения эукариотических водорослей было формирование ядра и хлоропластов. На этом этапе эволюции появились красные водоросли, для которых характерно отсутствие жгутиковых стадий, примитивность строения хлоропластов и появление второй разновидности хлорофилла - хлорофилла d. Несмотря на сложность цикла развития и анатомического строения, достигнутую некоторыми представителями, красные водоросли оказались боковой и слепой ветвью эволюции.

Важнейшим моментом в становлении органического мира на Земле явилось развитие у одноклеточных эукариотов двигательного аппарата - жгутиков, построенных весьма своеобразно: внутри их по периферии располагаются 9 пар фибрилл и 2 фибриллы находятся в центре. С их появлением зародилась центральная прогрессивная группа - фотосинтезирующие эукариотические жгутиковые. Начиная с этого этапа эволюция эукариотов пошла в нескольких направлениях: у одних организмов в дополнение к хлорофиллу а появились хлорофилл b, с или е и ряд новых дополнительных пигментов, а другие организмы утратили фотосинтезирующие пигменты и полностью перешли к гетеротрофному питанию. Одновременно происходила эволюция, сопровождающаяся видоизменением первоначального строения жгутикового аппарата. Например, у диатомовых исчезла центральная пара фибрилл, у некоторых золотистых водорослей появилась гаптонема (уплощенный "жгутик") с 5-8 одиночными фибриллами по периферии и тремя мембранами в оболочке. Правда, некоторые исследователи допускают, что эукариотические водоросли могли возникнуть от гетеротрофных безжгутиковых эукариотических организмов. Но это было бы возможно, если допустить, что фотосинтез с выделением кислорода и жгутики, имеющие одно и то же исходное строение у всех водорослей и гетеротрофных организмов, появлялись дважды. Существуют также предположения, что сине-зеленые водоросли непосредственно дали начало красным водорослям, а водоросли, обладающие жгутиками, произошли от бесцветных жгутиковых. Однако это означало бы, что дважды в ходе эволюции формировалось ядро, имеющее одно и то же строение и делящееся митотически, и дважды создавались одинаковые фотосинтезирующие системы с хлорофиллом а и хлоропластами. Все это крайне маловероятно.

Согласно изложенным представлениям о путях возникновения эукариотических водорослей, гетеротрофные жгутиковые приходится выводить из фотосинтезирующих самостоятельно в нескольких ветвях. Проще допустить неоднократную утрату хлоропластов, которая, к то-му же, действительно наблюдается у представителей многих групп одноклеточных водорослей, чем предположить симбиотическое происхождение эукариот или многократное возникновение фотосинтеза и единообразно устроенных у всех эукариот жгутиков и ядер. Утрата пластид некоторыми жгутиковыми тем более допустима, что фототрофные организмы, как прокариоты, так и эукариоты, никогда не теряли полностью способности к гетеротрофному питанию, унаследованному от первичных гетеротрофов, появившихся при зарождении жизни на Земле. Вместе с тем всем организмам, живущим на Земле, свойственно биохимическое единство независимо от способа питания (автотрофного или гетеротрофного). Дж. Бернал, например, писал: "...при рассмотрении биохимии в целом, включая процессы, протекающие у всех видов животных и растений, а также бактерий и вирусов, обнаруживалось необычайное единство и экономичность. Все снова и снова мы встречаемся с одними и теми же химическими реакциями и структурами - вплоть до деталей атомной структуры. И даже там, где наблюдаются вариации, это вариации на одну и ту же тему. Так, например, порфирины используются в дыхательных ферментах, при фотосинтезе и при переносе кислорода у высших животных".

Первичные фотосинтезирующие жгутиковые эволюционировали по двум главным направлениям. У одних жгутиковых преобладающее значение получили бурые пигменты, и у ряда представителей появился второй хлорофилл - с или е, а в числе запасных питательных веществ у многих представителей стали образовываться разные модификации специфического полисахарида ламинарина. Второе направление эволюции жгутиковых характеризуется преобладанием зеленой окраски и наличием хлорофилла b наряду с хлорофиллом а. Промежуточное положение между этими двумя основными направлениями заняли жгутиковые, которые, эволюционируя, привели к появлению разнородной группы желто-зеленых водорослей, имеющих зеленую окраску. Хлоропласты желто-зеленых водорослей не содержат хлорофилла b и имеют такое же строение, как у большинства водорослей с бурыми пигментами. В качестве запасного вещества может образовываться хризоламинарин; крахмал и парамилон отсутствуют. В пределах каждого из этих направлений эволюция пошла по нескольким линиям, нередко параллельно, сопровождаясь возникновением сходных форм строения тела.

Жгутиковые с преобладанием бурых пигментов эволюционировали несколькими путями, которые привели к возникновению водорослей: золотистых, диатомовых, бурых и пирофитовых. Последние фактически представляют два самостоятельных отдела, из которых один, объединяющий динофитовые водоросли, выделяется строением ядерного аппарата не только среди водорослей с бурыми пигментами, но и среди всех эукариотических организмов. Из числа водорослей, окрашенных в бурый цвет, наибольшего расцвета достигли диатомовые и бурые. Диатомовые заняли доминирующее положение среди микроскопических водорослей морей и континентальных водоемов. Бурые водоросли оказались наиболее приспособленными к жизни в прибрежной зоне моря. У них возник ряд приспособлений, позднее появившихся на иной основе у наземных растений. Здесь имеется в виду наличие у бурых водорослей ситовидных трубок, подобных по субмикроскопическому строению проводящим элементам флоэмы выс-ших растений, а также развитие спорофита на гаметофите или гаметофита на спорофите и размножение некоторых видов посредством сформированных проростков спорофитов. Бурые водоросли захватили в море наиболее благоприятные для роста донных водорослей места, где существует твердый грунт и почти постоянное движение воды. Среди морских донных водорослей бурые водоросли заняли такое же положение, как покрытосеменные растения на суше. В планктоне морей значительную долю растительных организмов, кроме диатомовых, составляют еще только кокколитофориды из золотистых водорослей и динофитовые водоросли.

Эволюция жгутиковых с зелеными пигментами шла в основном в одном направлении, охватывающем отдел зеленых водорослей. От него очень рано отделились эвгленовые водоросли, которые не эволюционировали дальше одноклеточного состояния. От многоклеточных зеленых водорослей в качестве боковой ветви эволюции отделились харовые водоросли. У них наиболее сложно устроенные органы полового размножения среди водорослей с зелеными пигментами, и тем не менее это тупиковая группа, представленная сейчас ограниченным числом родов и видов довольно однотипного строения. В прошлые геологические эпохи пышного развития достигали из зеленых водорослей дазикладовые и сифоновые, последние и сейчас играют существенную роль в жизни тропических морей. Эволюция зеленых водорослей в водной среде не привела к появлению сложно устроенных и крупных слоевищ тканевого строения, сравнимых с бурыми и красными водорослями. Продолжением эволюции зеленых водорослей явилось возникновение фотосинтезирующих высших наземных растений.

Происхождение наземных растений иногда пытаются связывать с бурыми водорослями из-за существования у них многогнездных спорангиев и гаметангиев, которые ошибочно принимают за многоклеточные органы размножения. Вместилища бурых водорослей делятся на камеры в последний момент при формировании в них зооидов, чего не наблюдается у наземных растений. В то же время бурые водоросли сильно отличаются от наземных растений набором пигментов, запасными питательными веществами, химическим составом оболочки.

Биологи убеждены, что с целебной силой морских водорослей не сравнится ни одно растение на суше.

Жизнь изначально зародилась в море, и эти гидробионты за период эволюции накопили беспрецедентный биологический состав. Это такие крайне необходимые человеку вещества как ламинарин, фукоидан, соли альгиновой кислоты, аминокислоты, макро- и микроэлементы.

Отечественная продукция на основе морских водорослей разрабатывалась в течение достаточно продолжительного периода. Основной целью исследований ставилось решение проблемы низкой усвояемости морской водоросли Ламинария Японика (Laminaria Japonica) и Фукуса (Fucus).

Стенки этих растений покрыты прочной целлюлозой, которую человеческой организм не способен расщепить. Поэтому усвояемость Ламинарии и Фукуса человеком не превышает 4%. Что крайне затрудняет медицинское использование водорослей.

В результате целенаправленной работы российских ученых (А.Н. Разумов, А.Г. Одинец и др.) был запатентован особый метод низкотемпературного гидролиза, позволяющий расщепить стенку водорослей, не потеряв при этом ни один полезный компонент из его состава.

На основе данной технологии был получен продукт из морских водорослей в виде биогеля, предназначенного для диетического (лечебного и профилактического) питания.

Было проведено около 20 клинических испытаний, по результатам которых биогель рекомендован в комплексной терапии при:
- заболеваниях желудочно-кишечного тракта (дисбактериоз, запоры, хронический гастрит и т.д.);
- заболеваниях щитовидной железы (гипотиреоз);
- ишемической болезни сердца;
- артериальной гипертонии;
- атеросклерозе;
- нарушениях обмена веществ;
- ослабленном иммунитете
- всех формах интоксикации

Происхождение водорослей

Эволюция » Происхождение жизни на Земле » Происхождение водорослей

К водорослям относятся низшие одноклеточные и многоклеточные растения. Различают 12 отделов водорослей: пирофитовые, криптофитовые, золотистые, диатомовые, желто-зеленые, бурые, красные, эвгленовые, харовые, прохлорофитовые, зеленые. Происхождение и ход эволюции водорослей еще не выяснены. Предполагается существование в докембрии минимум трех групп фото-трофных прокариот, использовавших в качестве донора электронов воду.

Цианобактерии, содержащие, как и хлоропласты, хлорофилл а и выделяющие при фотосинтезе кислород.
Зеленые прокариоты, обладающие хлорофиллом Ь. Предполагается, что они дали начало пластидам зеленых водорослей и эвгленовых.
Желтые прокариоты, обладавшие хлорофиллом с, дали начало пластидам дино-флагеллат, золотистых, диатомовых, бурых водорослей.
Возникновение эукариотических водорослей представляют как результат ряда эндосимбиозов между прокариотами. Пластиды зеленых и красных водорослей есть результат симбиоза фаготрофных эукариот и фототрофных прокариот. Поэтому их пластиды имеют внутреннюю оболочку (прокариотическую клеточную мембрану) и внешнюю (мембрану вакуоли).

Зеленые и красные водоросли появились около 3 млрд. лет назад. Вначале появились одноклеточные, а затем - колониальные водоросли. Около миллиарда лет назад появились многоклеточные водоросли.

Среди зеленых водорослей сохранились формы, ряд которых дает представление об усложнении организации при возникновении многоклеточности у растений: хламидомонада (1-клеточная), гониум (4-клеточная), стефаносфера (8клеточная), пандорина (16-клеточная), эудорина (32-клеточная), вольвокс (40 тыс. клеток соматических и генеративных).


Министерство образования и науки РФ
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования
«Государственная Полярная Академия»

Реферат
по дисциплине водные растения
на тему:
«Происхождение и эволюция водорослей»

Выполнил:
Студент 1 курса группы 021
Собиров У.Х.

Проверил: Старший преподаватель Кознева Н.В.

Санкт-Петербург
2013

Мир водорослей
Мир водорослей огромен. Он занимает в растительном царстве совершенно особое, исключительное по своему значению место, как в историческом аспекте, так и по той роли, которая принадлежит ему в общем круговороте веществ в природе. Вместе с тем само понятие ""водоросли"" в научном отношении страдает большой неопределённостью. Это заставляет специально рассмотреть отличие относимых сюда растительных организмов от других представителей растительного царства

Действительно, слово "водоросли" означает лишь то, что это растения, живущие в воде. Однако в ботанике этот термин применяется в более узком смысле, и не все растения, наблюдаемые нами в водоёмах, можно назвать водорослями. С другой стороны, именно водоросли мы часто попросту не замечаем в водоёмах, так как очень многие из них нелегко распознать невооружённым глазом.

Приглядываясь к различным водоёмам, особенно к озёрам, мы прежде всего замечаем обилие растений. Некоторые из них прикреплены ко дну. К ним относятся, например, крупные зелёные скопления так называемой тины. Здесь же нередко встречаются и более крупные водоросли, состоящие из хорошо заметных на глаз простых или ветвящихся нитей, или совсем крупные хоровые водоросли, внешне похожие на хвощ.

С другой стороны, значительное количество микроскопических водорослей, таких же как в водоёмах, произрастает и на суше: на поверхности почвы и в самой её толще, на деревьях, камнях. Правда, жизнь этих водорослей тоже тесно связана с водой, однако они могут довольствоваться только атмосферной и грунтовой влагой, росой. В отличие от ""водных"" водорослей, эти водоросли легко переносят высыхание и очень быстро оживают при малейшем увлажнении. В царстве растений водоросли относятся к обширномуподцарству низших, или слоевцовых растений, куда входят также бактерии, грибы и лишайники. Как и все низшие растения, водоросли размножаются вегетативно или с помощью спор, то есть относятся к споровым растениям. Однако в физиологическом отношении водоросли резко отличаются от остальных низших растений наличием хлорофилла, благодаря которому они способны ассимилировать на свету углекислый газ. Кроме того, многие водоросли, обладающие хорошо развитым хлорофиллом, помимо фототрофного, могут быть свойственны и другие типы питания.

Таким образом, исходя из сказанного, легко вывести точное научное определение водорослей. Водоросли - это низшие, то есть слоевцовые споровые растения, содержащие в своих клетках хлорофилл, и живущие преимущественно в воде. Такое определение, однако, не даёт представление о том огромном разнообразии в строении тела, которое свойственно водорослям. Здесь мы встречаемся и с микроскопическими организмами - одноклеточными и многоклеточными, и с крупными формами различного строения. Большого разнообразия достигают здесь способы размножения и строение органов размножения. Даже по окраске водоросли неодинаковы, так как одни содержат только хлорофилл, другие ещё ряд дополнительных пигментов, окрашивающие их в различные цвета.

Разделение водорослей на систематические группы высшего ранга в основном совпадает с характером их окраски, связанной конечно, с особенностями строения. Водоросли разделены по 10 отделам:

1. сине - зелёные водоросли;

2. пирофитовые водоросли;

3. золотистые водоросли;

4. диатомовые водоросли;

5. жёлто - зелёные водоросли;

6. бурые водоросли;

7. красные водоросли;

8. эвшеновые водоросли;

9. зелёные водоросли;

10. хоровые водоросли.

В научной литературе до сих пор продолжаются споры о положении в общей системе, с одной стороны, сине - зелёных водорослей и, с другой стороны, всех тех водорослей, которые представлены одноклеточными подвижными формами, снабжёнными органами движения - жгутиками (это почти все эвиленовые водоросли, большая часть пирофитовых и золотистых водорослей и отдельные классы жёлто - зелёных и зелёных водорослей).

Действительно, сине - зелёные резко отличаются от других водорослей простотой внутренней организации клеток. Их клетки лишены оформленного ядра, что сближает их с бактериями. Вместе с бактериями сине - зелёные водоросли составляют раздел организмов, обозначенный как прокариоты, то есть ""доядерные"", в отличие от всех остальных растений и животных, обладающих оформленным клеточным ядром и обозначаемых как эукариоты.

Что же касается жгутиковых форм водорослей, то здесь вопрос осложняется тем, что они во многих случаях близки к подобным же бесцветным формам, что дало повод для объединения всех их в общую систематическую группу ""жгутиковых организмов"" и включение в систему животного мира.

С этих позиций мир водорослей как первичных фототрофных организмов един и целостен. Морфологическое многообразие его различных ветвей есть следствие эволюционного взрыва, вызванного появлением фотосинтеза, который обеспечил хлорофилоносным организмам успешное развитие в чисто абиотической среде. Учитывая особенности строения клеток сине - зелёных водорослей, следует думать, что возникновение хлорофилла произошло ещё на прокариотическом уровне, а наличие в настоящее время сходных хлорофилоностных и бесцветных эукариотических жгутиковых форм обусловлено морфологическим параллелизмом эволюционного развития в разных ветвях организмов. Во всяком случае, у водорослей подобное явление морфологического параллелизма распространено очень широко. Такая точка зрения хорошо подтверждается ещё и тем, что в пределах большинства вышеперечисленных отделов водорослей жгутиковые формы тесно связанны переходами с другими, типично ""водорослевыми"" структурами - неподвижными клетками, колониями и нитями. С другой стороны в пределах некоторых отделов имеются и безусловно вторичные обесцветившиеся формы.

Таким образом, у нас нет оснований отказываться от рассмотрения водорослей как морфофизиологической целостности, от выяснения их многообразия в целом, происхождения и взаимных филогенетических связей. Точно так же с этих позиций целостности хорошо выявляются место и роль водорослей в природе: в историческом плане они представляют собой первый этап в развитии всего зелёного ствола растительного мира, а в общем круговороте веществ в природе играют огромную роль как первичное звено всех пищевых связей в водной среде и гигантский поставщик кислорода в атмосферу.

Основные типы морфологической структуры тела водорослей.

В отличие от высших растений целиком и полностью характеризующихся одним листостебельным типом строения, водоросли в пределах слоевцового типа строения обнаруживают исключительное морфологическое разнообразие. Тело водорослей, как уже упоминалось, может быть всех четырех степеней сложности, вообще известных для организмов - одноклеточным, колониальным, многоклеточным и неклеточным. Их размеры в пределах каждой из этих форм отличаются огромным диапазоном - от микроскопических, до очень крупных. Так некоторые виды зеленой одноклеточной водоросли синехотистис едва достигают 1 мкм, одноклеточные зелёные водоросли из рода хлорелла могут быть в 2 мкм, а длинна клеток, часто составляет 15 - 20 см.

Однако самыми крупными размерами отличаются многоклеточные морские бурые водоросли, слоевища которых у отдельных видов могут достигать в длину 30 - 45 см. Водоросли поражают многообразием своего внешнего облика. Вместе с тем всё это исключительное многообразие имеет в своей основе несколько хорошо обособленных типов морфологической структуры, являющихся выражением главнейших ступеней морфологической дифференциации тела водорослей в процессе эволюции. Важно отметить, что эти ступени то в большей, то в меньшей степени повторяются в разных отделах водорослей, что свидетельствует об известном параллелизме эволюционного развития в пределах этих отделов.

В настоящее время различают 9 основных типов морфологической структуры тела водорослей. Из них 4 относятся к одноклеточным формам, 1 - к неклеточным, остальные 4 - к многоклеточным.

1. Амёбоидная структура представлена одноклеточными организмами;

2. Монадная структура свойственна одноклеточным организмам;

3. Коккоидная структура характеризуется отдельными клетками;

4. Палынелоидная структура представляет собой усложнённый; вариант коккоидной структуры;

5. Нитчатая структура представлена талломами;

6. Разнонитчатая структура представлена талломами;

7. Пластинчатая структура характеризуется многоклеточными слоевищами в форме пластиков;

8. Сифональная структура представляет собой особый тип строения, свойственный только некоторым водорослям и нередко называемый неклеточным;

9. Хорофитная структура свойственна только хоровым водорослям.

Распространённость водорослей в водоёмах.
Водоросли - одни из древнейших организмов, населяющих нашу планету. Пожалуй, только бактерии могут поспорить с ними в древности происхождения и длительности существования. В прошлые геологические эпохи, как и в настоящее время, водоросли населяли океаны, реки, озёра и другие водоёмы. Обогатив атмосферу кислородом, они вызвали к жизни мир разнообразных животных и способствовали развитию аэробных бактерий; они явились родоначальниками растений, заселивших сушу, и как это не удивительно, создали могучие толщи горных пород.
В воде и на суше, в снегах, льдах и горячих источниках, по всему земному шару - от просторов Северного Ледовитого океана и его островов, до тропиков, и от тропиков до снегов и скал Антарктиды, от морских глубин до высоких гор - всюду мы находим водоросли. Их микроскопические размеры способствуют переносу на большие расстояния. Водные течения разносят их по морям и океанам. Такую же роль выполняют рыбы, особенно проходные. Выброшенные из воды на берег и высохшие, подхваченные с илом и пылью с поверхности скал и почвы ветром и птицами - водоросли переносятся на большие расстояния. Пути и способы распространения водорослей исключительно многообразны и полностью обеспечивают их повсеместное разнесение.
Наиболее общим выражением их является распределение водорослей по широтным зонам: в тёплых тропических морях, где условия более благоприятны, мы находим и большее количество видов; в холодных арктических морях флора водорослей по видовому составу значительно беднее.
Распространённые по всему земному шару, водоросли, несомненно должны играть значительную роль в жизни природы. На первый взгляд водоросли малозаметны и роль их кажется незначительной, и только в исключительных случаях, как, например, в густых зарослях морских макрофитов или при "цветении" воды, вызываемом планктонными водорослями, они поражают своим изобилием. Произведённые подсчёты показывают, что в масштабе всей Земли роль водорослей в общем балансе живого вещества оказывается поистине огромной.
Основное значение водорослей в жизни природы вытекает из их физиологических особенностей как зелёных растений: подобно высшим зелёным растениям на суше, водоросли в воде являются основным созидателем органического вещества. Таким образом, можно сказать, что весь остальной мир современных живых существ воды в той или иной мере обязан своим существованием водорослям, так как водоросли, благодаря содержанию в них хлорофилла, способны созидать органические вещества своего тела из неорганических веществ окружающей их воды. Следовательно они являются в воде производителями той первопищи, которой в дальнейшем пользуются все остальные лишённые хлорофилла водные организмы.
Огромное значение имеет также то обстоятельство, что водоросли в процессе фотосинтеза выделяют свободный кислород, необходимый для дыхания водных организмов, как животных, так и растительных.

Список используемой литературы.
"Жизнь растений - водоросли"

А.А. Фёдоров, А.Л. Курсанов, Н.В. Циуин, М.В. Горленко, С.Р. Жилин.

Москва - Просвещение - 1977 год

"Ботанический атлас"

Н.А. Монтеверде

"Малая современная энциклопедия"

Вверх