Методы защиты гидросферы от загрязнения. Защита гидросферы от промышленных загрязнений. Загрязнение ионами тяжелых металлов

Поверхностные воды защищают от засорения, загрязнения и истощения. Для защиты от засорения предотвращают попадание в поверхностные водоемы и реки различных твердых отходов и других предметов. Для защиты от истощения контролируют минимально допустимые стоки вод. Для защиты от загрязнения применяют следующие мероприятия:

– развитие безотходных и безводных технологий и оборотного водоснабжения;

– очистка сточных вод (промышленных, коммунально-бытовых и др.);

– закачка сточных вод в глубокие водоносные горизонты (подземное захоронение);

– очистка и обеззараживание поверхностных вод, используемых для водоснабжения и других целей.

Безотходные и безводные технологии и оборотное водоснабжение. Главный загрязнитель поверхностных вод – сточные воды. Наиболее действенным способом защиты поверхностных вод от загрязнения сточными водами являются безводные и безотходные технологии. На начальном этапе создается оборотное водоснабжение. В его систему включают ряд очистных сооружений и установок, что создает замкнутый цикл использования сточных вод, которые при таком способе все время находятся в обороте и не попадают в поверхностные водоемы.

Очистка сточных вод. Существуют различные способы очистки сточных вод: механический, физико-химический, химический, биологический и термический. В зависимости от вида сточных вод их очистка может производиться каким-либо одним или комбинированными способами, с обработкой осадка (или избыточной биомассы) и обеззараживанием сточных вод перед сбросом их в водоем.

Механическая очистка основана на процеживании, отстаивании и фильтровании. При этом из сточных вод удаляются нерастворимые механические примеси: песок, глинистые частицы, окалина и др. Физико-химическая очистка предполагает коагуляцию, сорбцию, флотацию, экстракцию и другие методы. Из сточных вод удаляются тонкодисперсные взвешенные частицы, минеральные и органические вещества. Химическая очистка основана на процессах нейтрализации, окисления, озонировании, хлорировании. Сточные воды очищаются от токсичных веществ и микроорганизмов. Биологическая (биохимическая) очистка основана на способности микроорганизмов использовать для своего питания многие органические и неорганические соединения из сточных вод (сероводород, аммиак, нитриты и т. д.). К термическим методам прибегают при очистке промышленных сточных вод, содержащих главным образом высокотоксичные органические компоненты, разрушающиеся при высоких температурах.

При всех методах очистки сточных вод необходима обработка и утилизация образующихся шламов и осадков (особенно при очистке токсичных промстоков). С этой целью их складируют на специальных полигонах, обрабатывают в биологических сооружениях, перерабатывают с помощью растений (гиацинты, тростник и др.) или сжигают в специальных печах.

Закачка сточных вод в глубокие водоносные горизонты (подземное захоронение) осуществляется через систему поглощающих скважин. При этом способе отпадает необходимость в дорогостоящей очистке и обезвреживании сточных вод и в сооружении очистных сооружений.

Агролесомелиорация и гидротехнические мероприятия защищают поверхностные воды от загрязнения и засорения. Они предотвращают эвтрофикацию озер, водохранилищ и малых рек, возникновение эрозии, оползней, обрушение берегов, уменьшают загрязненный поверхностный сток.

Водоохранные зоны защищают поверхностные воды от загрязнения, засорения и истощения. Они создаются на всех водных объектах. Их ширина на реках составляет от 0,1 до 1,5–2,0 км, включая пойму реки, террасы и береговой склон. В пределах этих зон запрещается распашка земель, выпас скота, применение пестицидов и удобрений, строительные работы и др.

Подземные воды охраняют от загрязнения и истощения. Для защиты от истощения применяют:

– регулирование режима водозабора подземных вод;

– рациональное размещение водозаборов по площади;

– определение величины эксплуатационных запасов как предела их рационального использования,

– введение кранового режима эксплуатации самоизливающихся артезианских скважин и др.

Для защиты подземных вод от загрязнения применяют две группы мероприятий: профилактические и специальные.

Профилактические мероприятия направлены на предупреждение загрязнения. Они предусматривают устройство зон санитарной охраны (ЗСО) – территорий вокруг источников централизованного питьевого водоснабжения, создаваемых для исключения возможности загрязнения подземных вод.

Специальные мероприятия направлены на локализацию или ликвидацию очага загрязнения. Они предусматривают изоляцию источников загрязнения от остальной части водоносного горизонта (завесы, противофильтрационные стенки), а также на перехват загрязненных подземных вод с помощью дренажа. Для ликвидации локальных очагов загрязнения ведут длительные откачки загрязненных подземных вод.

Для предупреждения засорения поверхностных вод необходимо применять меры, исключающие попадание в водоемы и реки строительного мусора, твердых отходов, остатков лесосплава и других предметов, негативно влияющих на качество вод и условия обитания гидробионтов.

Для предотвращения истощения поверхностных вод предусмотрен строгий контроль забора воды с целью недопущения снижения стока ниже минимально допустимого.

Наиболее сложной проблемой является защита поверхностных вод от загрязнения. Главным загрязнителем поверхностных вод служат бытовые и промышленные сточные воды, поэтому наиболее актуальной с экологической точки зрения является разработка и внедрение эффективных методов очистки сточных вод .

Самым действенным способом защиты поверхностных вод от загрязнения их сточными водами может служить разработка и внедрение безводной или безотходной технологии производства, в частности, создание оборотного водоснабжения . При организации системы оборотного водоснабжения в нее включают ряд очистных сооружений и установок, что позволяет создать замкнутый цикл использования производственных и бытовых сточных вод, полностью исключающий их попадание в поверхностные водоемы.

Ввиду многообразия состава сточных вод применяют различные способы их очистки: механический, физико-химический, химический, биологический и др. В процессе очистки предусматривают обработку осадка и обеззараживание сточных вод перед сбросом их в водоем. При механической очистке из производственных сточных вод путем процеживания, отстаивания и фильтрования удаляется до 90% нерастворимых механических примесей различной степени дисперсности, а из бытовых сточных вод - до 60%. Для этих целей применяют решетки, песколовки, песчаные фильтры, отстойники. Вещества, образующие пленку на поверхности воды (нефть, масла, смолы, полимеры и др.), задерживают специальными нефте- и маслоловушками, либо выжигают.

К основным химическим способам относят нейтрализацию и окисление. Для нейтрализации кислот и щелочей в сточные воды вводят специальные реагенты (известь, кальцинированную соду, аммиак), для окисления - различные окислители.

В случае физико-химической очистки используются:

Коагуляция - введение в сточные воды коагулянтов (солей аммония, железа, меди и др.) для образования хлопьевидных осадков, которые затем легко удаляются;

Сорбция - способность некоторых веществ (глины, активированный уголь, силикагель, торф и др.) поглощать загрязнение;

Флотация - пропускание через сточные воды воздуха. Газовые пузырьки при движении вверх захватывают поверхностно-активные вещества, нефть, масла, другие загрязнения и образуют на поверхности воды легко удаляемый слой пены.

Для очистки коммунально-бытовых промстоков целлюлозно-бумажных, нефтеперерабатывающих, пищевых предприятий широко применяется биологический (биохимический ) метод. Этот метод основан на способности искусственно вселяемых в водную среду микроорганизмов использовать для своего развития органические и некоторые неорганические соединения, содержащиеся в сточных водах (сероводород, аммиак, нитриты, сульфиды и т.д.).

После биологической очистки и отстаивания сточные воды обеззараживают (дезинфицируют) с помощью соединений хлора или других сильных окислителей. При хлорировании уничтожаются патогенные бактерии, вирусы и другие болезнетворные организмы. После этого сточные воды можно использовать в оборотном водоснабжении либо сбрасывать в поверхностные водоемы.

В последние годы разрабатываются новые методы, способствующие экологизации процессов очистки сточных вод. К таким методам относятся:

Электрохимические методы, основанные на процессах анодного окисления и катодного восстановления (электролиз);

Мембранные процессы очистки;

Магнитная обработка, позволяющая улучшить флотацию взвешенных частиц;

Радиационная очистка воды;

Озонирование;

Внедрение новых селективных типов сорбентов для избирательного выделения полезных компонентов из сточных вод с целью их вторичного использования.

Значительную роль в загрязнении водных объектов играют пестициды и удобрения , смываемые поверхностным стоком с сельскохозяйственных угодий. Для предотвращения попадания загрязняющих стоков в водоемы необходим комплекс мероприятий, включающих соблюдение норм и сроков внесения удобрений и ядохимикатов, очаговую обработку пестицидами вместо сплошной, замену ядохимикатов биологическими способами защиты растений и т.д.

Сложную задачу представляет утилизация стоков животноводческих комплексов, губительно действующих на водные экосистемы. В настоящее время наиболее экономичной признана технология, согласно которой стоки разделяют с помощью центрифугирования на твердую и жидкую фракции. При этом твердая фракция превращается в компост и вывозится на поля. Жидкая часть (навозная жижа) проходит через химический реактор и превращается в гумус. При разложении органики выделяются метан, двуокись углерода и сероводород. Энергию этого биогаза можно использовать для производства тепла.

Одним из перспективных способов уменьшения загрязнения поверхностных вод является закачка сточных вод в глубокие водоносные горизонты через систему поглощающих скважин (подземное захоронение). При этом способе отпадает необходимость в дорогостоящей очистке сточных вод и строительстве очистных сооружений. Однако данный метод целесообразен для изоляции лишь небольших количеств высокотоксичных сточных вод, так как очень непросто оценить возможные экологические последствия обширного загрязнения изолированных глубокозалегающих горизонтов подземных вод. В частности, при этом способе технически очень сложно полностью исключить возможность проникновения загрязненных вод из подземных водоносных горизонтов на поверхность земли или в другие водоносные горизонты через затрубные пространства скважин.

Среди водоохранных проблем одной из важнейших является разработка и внедрение эффективных методов обеззараживания и очистки поверхностных вод, используемых для питьевого водоснабжения . Начиная с 1896 года и до настоящего времени наиболее распространенным способом борьбы с бактериальными загрязнениями в нашей стране является метод обеззараживания хлором. Однако хлорирование воды несет в себе определенную опасность и для здоровья людей. Во многих странах Запада вместо хлорирования на станциях очистки воды применяется обработка воды озоном или ультрафиолетовым излучением. В нашей стране применение этих экологически эффективных технологий ограничено из-за высокой стоимости переоборудования водоочистных станций.

Современная технология очистки питьевой воды от других экологически опасных веществ (нефтепродуктов, синтетических поверхностно-активных веществ, пестицидов и др.) основывается на использовании сорбционных процессов с применением активированного угля или его аналогов.

Значительную роль в деле охраны поверхностных вод от загрязнения и засорения играют агролесомелиорация и гидротехнические мероприятия. С их помощью можно предотвращать заиление и зарастание озер, водохранилищ и малых рек, а также эрозию, образование оползней, обрушение берегов и т.д.

Важную защитную функцию на любом водном объекте могут выполнять водоохранные зоны шириной от 0,1 до 2 км, в пределах которых запрещена распашка земель, выпас скота, применение ядохимикатов и удобрений, производство строительных работ и др.

Однако с учетом неразрывной связи всех природных и антропогенных экосистем необходимо иметь в виду, что невозможно обеспечить чистоту поверхностных водоемов и водотоков без защиты от загрязнений атмосферы, почв, подземных вод и т.д.

Основные мероприятия по защите подземных вод заключаются в предотвращении истощения запасов подземных вод и защите их от загрязнения. Для борьбы с истощением подземных вод, пригодных для питьевого водоснабжения, предусматриваются различные меры: регулирование режима водоотбора подземных вод, более рациональное размещение водозаборов по площади, ограничение величины водозабора, введение вентильного режима эксплуатации самоизливающихся артезианских скважин. В последние годы для предупреждения истощения подземных вод часто применяют искусственное пополнение их запасов путем перевода части поверхностного стока в подземный.

Основными мерами борьбы с загрязнением подземных вод являются профилактические. С этой целью совершенствуются методы очистки сточных вод, внедряются производства с бессточной технологией, тщательно изолируются резервуары промышленных стоков, регламентируется использование пестицидов и удобрений в сельском хозяйстве и т.д.

Важнейшей мерой предупреждения загрязнения подземных вод в районах водозаборов является устройство вокруг них санитарно-защитных зон, состоящих из трех поясов. На территории поясов запрещается размещение любых объектов, способных вызвать химическое или бактериальное загрязнения, запрещается использование минеральных удобрений и пестицидов, промышленная вырубка леса.


Похожая информация.


Рассматриваемые в данном разделе методы и средства защиты гидросферы могут использоваться для очистки всех видов воды: питьевой, технической, а также производственных, бытовых и поверхностных сточных вод. Вид очищаемой воды определяет выбор схемы и конкретного технологического оборудования, используемого для очистки.

Тем не менее для очистки любого вида воды, как правило, первой стадией очистки является механическая, второй - физико-химическая и третьей - биологическая. При этом на многих стадиях физико-химической и биологической очистки воды применяют сооружения вторичной механической очистки (как правило, вторичные отстойники) для выделения из воды нерастворимых примесей, образовавшихся в процессах физико-химической или биологической очистки.

Методы и технологическое оборудование для очистки сточных вод можно выбрать, зная допустимые концентрации примесей в очищенных сточных водах. При этом необходимо иметь в виду, что требуемая эффективность и надежность любого очистного устройства обеспечиваются в определенном диапазоне значений концентрации примесей и расходов сточных вод. С этой целью применяют усреднение концентрации примесей или расхода сточных вод, а в отдельных случаях и по обоим показателям одновременно. Для этого на входе в очистные сооружения устанавливают усреднители, выбор и расчет которых зависит от параметров изменяющихся по времени сбросов сточных вод.

В соответствии с видами процессов, реализуемых при очистке, целесообразно существующие методы классифицировать на механические, физико-химические и биологические.

К механическим видам очистки сточных вод от взвешенных веществ относятся процеживание, отстаивание, обработка в поле действия центробежных сил и фильтрование.

Процеживание реализуют в решетках и волокноуловителях. В вертикальных или наклонных решетках ширина прозоров обычно составляет 15-20 мм. Для удаления осадка веществ с входной поверхности решеток используют ручную или механическую очистку. Последующая обработка удаленного осадка требует дополнительных затрат и ухудшает санитарно-гигиенические условия в помещении. Эти недостатки устраняют при использовании решеток-дробилок, которые улавливают крупные взвешенные вещества и измельчают их до 10 мм и менее.

Для выделения волокнистых веществ из сточных вод целлюлозно-бумажных и текстильных предприятий используют волокноуловители, например, с использованием перфорированных дисков или в виде движущихся сеток с нанесенным па них слоем волокнистой массы.

Отстаивание основано на свободном оседании (всплывании) примесей с плотностью больше (меньше) плотности воды, которое реализуется в песколовках, отстойниках и жироуловителях.

Песколовки (рис. 5.9) используют для очистки сточных вод от частиц металла и песка размеров более 0,25 мм. В зависимости от направления движения сточной воды применяют горизонтальные песколовки с прямолинейным и круговым движением воды, вертикальные и аэрируемые.

Отстойники (рис. 5.10) используют для очистки сточных вод от механических частиц размером более 0,1 мм, а также от частиц нефтепродуктов. В зависимости от направления движения потока сточной воды применяют горизонтальные, радиальные или комбинированные отстойники.

При расчете отстойника определяющими являются его длина / и рабочая высота Н.

Очистку сточных вод в поле действия центробежных сил осуществляют в открытых или напорных гидроциклонах и

Рис. 5.9.

1 - входной патрубок; 2 - корпус песколовки; 3 - шламосборник; 4 - выходной патрубок

центрифугах. Открытые гидроциклоны применяют для выделения из сточной воды крупных твердых примесей со скоростью осаждения более 0,02 м/с. Такие гидроциклоны имеют большую производительность и малые потери напора, не превышающие 0,5 кПа. Эффективность очистки сточных вод от твердых частиц в гидроциклонах зависит от состава примесей

Рис. 5.10.

(материала, размера, формы частиц и др., а также от конструктивных и геометрических характеристик гидроциклона.

Открытый гидроциклон (рис. 5.11) состоит из входного патрубка 1, кольцевого водослива 2, патрубка 3 для отвода очищенной воды и шламоотводящей трубы 4. Существуют открытые гидроциклоны с нижним отводом очищенной воды, а также гидроциклоны с внутренней цилиндрической перегородкой.

Конструктивная схема напорного гидроциклона аналогична схеме циклона для очистки газов от твердых частиц.

На рис. 5.12 представлена схема напорного гидроциклона, обеспечивающего очистку сточной воды и от твердых частиц, и от маслопродуктов. Сточная вода через установленный тангенциально по отношению к корпусу гидроциклона входной трубопровод 1 поступает в гидроциклон. Вследствие закру

Рис. 5.11.

чивания потока сточной воды твердые частицы отбрасываются к стенкам гидроциклона и стекают в шламосборник 7, откуда они периодически удаляются. Сточная вода с содержащимися в пей маслопродуктами движется вверх.

При этом вследствие меньшей плотности маслопродуктов они концентрируются в ядре закрученного потока, который поступает в приемную камеру 3, и через трубопровод 5 маслопродукты выводятся из гидроциклона для последующей утилизации. Сточная вода, очищенная от твердых частиц и маслопродуктов, скапливается в камере 2, откуда через трубопровод 6 отводится для дальнейшей очистки. Трубопровод 4 с регулируемым проходным сечением предназначен для выпуска воздуха, концентрирующегося в ядре закрученною поток;! очищаемой сточной воды.

Рис. 5.12.

При проектировании гидроциклонов расчету подлежит их производительность () при выбранных размерах а.

Фильтрование применяют для очистки сточных вод от тонкодисперсных примесей с малой их концентрацией. Его используют как на начальной стадии очистки сточных вод, так и после некоторых методов физико-химической или биологической очистки. Для очистки сточных вод фильтрованием применяют в основном два типа фильтров: зернистые, в которых очищаемую сточную воду пропускают через насадки несвязанных пористых материалов, и микрофильтры, фильтроэлементы которых изготовляют из связанных пористых материалов (сеток, натуральных и синтетических тканей, спеченных металлических порошков и т.п.).

Для очистки больших расходов сточных вод от мелкодисперсных твердых примесей применяют зернистые фильтры (рис. 5.13). Сточная вода но трубопроводу 4 поступает в корпус / фильтра и проходит через фильтровальную загрузку 3 из частиц мраморной крошки, шупгизита и т.п., расположенную между пористыми перегородками 2 и 5. Очищенная от твердых частиц сточная вода скапливается в объеме, ограничен

Рис. 5.13.

ном пористой перегородкой 5, и выводится из фильтра через трубопровод 8. По мере осаждения твердых частиц в фильтровальном материале перепад давлений на фильтре увеличивается и при достижении предельного значения перекрывается входной трубопровод 4 и по трубопроводу 9 подается сжатый воздух. Он вытесняет из фильтровального слоя 3 воду и твердые частицы в желоб 6", которые затем по трубопроводу 7 выводятся из фильтра. Достоинством конструкции фильтра является развитая поверхность фильтрования, а также простота конструкции и высокая эффективность.

В настоящее время для очистки сточных вод от маслопродуктов широко используют фильтры с фильтровальным материалом из частиц пенополиуретана. Пенополиуретановые частицы, обладая большой маслопоглощающей способностью, обеспечивают эффективность очистки до 0,97-0,99 при скорости фильтрования до 0,01 м/с. При этом насадка из пенополиуретана легко регенерируется при механическом выжимании маслопродуктов.

Физико-химические методы очистки используют для очистки от растворенных примесей, а в некоторых случаях и от взвешенных веществ. Многие методы физико-химической очистки требуют предварительного глубокого выделения из сточной воды взвешенных веществ, для чего широко используют процесс коагуляции.

В настоящее время в связи с использованием оборотных систем водоснабжения существенно увеличивается применение физико-химических методов очистки сточных вод, основными из которых являются флотация, экстракция, нейтрализация, сорбция, ионообменная и электрохимическая очистка, гиперфильтрация, эвапорация, выпаривание, испарение и кристаллизация.

Флотация предназначена для интенсификации процесса всплывания маслопродуктов при обволакивании их частиц пузырьками газа, подаваемого в сточную воду. В основе этого процесса - молекулярное слипание частиц масла и пузырьков тонкодиспергированного в воде газа. Образование агрегатов "частица - пузырьки газа" зависит от интенсивности их столкновения друг с другом, химического взаимодействия содержащихся в воде веществ, избыточного давления газа в сточной воде и т.п.

В зависимости от способа образования пузырьков газа различают следующие виды флотации: напорную, пневматическую, пенную, химическую, вибрационную, биологическую, электрофлотацию и др.

Экстракция сточных вод основана на перераспределении примесей сточных вод в смеси двух взаимно нерастворимых жидкостей (сточной воды и экстрагента). Количественно интенсивность перераспределения оценивается коэффициентом экстракции К9 = сэ / си , где сэ и св - концентрации примеси в экстрагенте и сточной воде по окончании процесса экстракции. В частности, при очистке сточных вод от фенола с использованием в качестве экстрагента бензола или бутил-ацетата Кэ составляет соответственно 2,4 и 8-12. Для интенсификации процесса экстракции перемешивание смеси сточных вод с экстрагентом осуществляют в экстракционных колоннах, заполненных насадками из колец Рашига.

Нейтрализация сточных вод предназначена для выделения из них кислот, щелочей, а также солей металлов на основе кислот и щелочей. Процесс нейтрализации основан на объединении ионов водорода и гидроксильной группы в молекулу воды, в результате чего сточная вода приобретает значение рН = 6,7 (нейтральная среда). Нейтрализацию кислот и их солей осуществляют щелочами или солями сильных щелочей: едким натром, едким кали, известью, известняком, доломитом, мрамором, мелом, магнезитом, содой, отходами щелочей и т.п. Наиболее дешевым и доступным реагентом для нейтрализации кислых сточных вод является гидроокись кальция (гашеная известь). Для нейтрализации сточных вод с содержанием щелочей и их солей (сточные воды целлюлозно-бумажных и текстильных заводов) можно использовать серную, соляную, азотную, фосфорную и другие кислоты.

На практике используют три способа нейтрализации сточных вод:

Фильтрационный - путем фильтрования сточной воды через насадки кусковых или зернистых материалов;

водно-реагентный - добавлением в сточную воду реагента в виде раствора или сухого вещества (извести, соды или шлака); нейтрализующим раствором может быть и щелочная сточная вода;

Полусухой - перемешиванием высококонцентрированных сточных вод (например, отработанного гальванического раствора) с сухим реагентом (известью, шлаком) с последующим образованием нейтральной тестообразной массы.

Сорбцию применяют для очистки сточных вод от растворимых примесей. В качестве сорбентов используют любые мелкодисперсные материалы (золу, торф, опилки, шлаки, глину); наиболее эффективный сорбент - активированный уголь.

Ионообменную очистку применяют для обессоливания и очистки сточных вод от ионов металлов и других примесей. Очистку осуществляют ионитами - синтетическими ионообменными смолами, изготовленными в виде гранул размером 0,2-2 мм. Иониты изготовляют из нерастворимых в воде полимерных веществ, имеющих на своей поверхности подвижный ион (катион или анион), который при определенных условиях вступает в реакцию обмена с ионами того же знака, содержащимися в сточной воде.

Различают сильно- и слабокислотные катиониты (в Н+-или №+-форме) и сильно- и слабоосновные аниониты (в ОН -или солевой форме), а также иониты смешанного действия.

В зависимости от вида и концентрации примесей в сточной воде, требуемой эффективности очистки используют различные схемы ионообменных установок. Для очистки сточных вод от анионов сильных кислот применяют технологическую схему одноступенчатого П-катионирования и ОН-анионирования с использованием сильнокислотного катионита и слабоосновного анионита (рис. 5.14, а). Для более глубокой очистки сточных вод, в том числе от солей, применяют одно- или двухступенчатое Н-катионирование на сильнокислотном катионите с последующим двухступенчатым ОН-анионированием на слабо-, а затем на сильноосновном анионите (рис. 5.14, б).

При необходимости обеспечивать значение рН = 6,7 и очистки сточной воды от анионов слабых кислот вместо анионитовых фильтров второй ступени используют фильтр смешанного действия, загружаемый смесью сильнокислотного катионита и сильноосновного анионита.

Электрохимическая очистка, в частности электрохимическое окисление, осуществляется электролизом и реализуется двумя путями: окислением веществ путем передачи

Рис. 5.14.

а - одноступенчатая очистка; б - очистка с двухступенчатым анионированием; в - очистка с промежуточной дегазацией и двухступенчатым анионированием; К - катионитовый фильтр;

А - анионитовый фильтр; Д - декарбонизатор; ПЬ промежуточный бак

электронов непосредственно на поверхности анода или через вещество-переносчика, а также в результате взаимодействия с сильными окислителями, образовавшимися в процессе электролиза.

Наличие в сточной воде достаточного количества хлорид-ионов обусловливает появление в ней при электролизе активного хлора (С12, НОС1, С120, СЮ, С103), который является сильнейшим окислителем и способен вызывать глубокую деструкцию многих органических веществ, содержащихся в сточных водах.

Электрохимическое окисление применяют для очистки сточных вод гальванических процессов, содержащих простые цианиды (КСЫ, №СЫ) или комплексные цианиды цинка, меди, железа и других металлов. Электрохимическое окисление осуществляют в электролизерах (обычно прямоугольной формы) непрерывного или периодического действия. На аноде происходит окисление цианидов в малотоксичные и нетоксичные продукты (цианаты, карбонаты, диоксид углерода, азот), а на катоде - разряд ионов водорода с образованием газообразного водорода и разряд ионов меди, цинка, кадмия, образующихся при диссоциации комплексных анионов с содержанием СЫ - группы.

На рис. 5.15 показана технологическая схема установки для электрохимического окисления сточных вод. В ее состав входят сборный резервуар /, бак 2 для приготовления концентрированного раствора №С1, электролизер 3 с источником постоянного напряжения 7. Очищенная от цианидов сточная вода выходит по трубопроводу 4, а при необходимости се доочистки по трубопроводу 5 вновь направляется в сборный резервуар 1. Для интенсификации процесса окисления в электролизер 3 по трубопроводу 6 подают сжатый воздух.

Гиперфильтрация (обратный осмос) реализуется разделением растворов путем фильтрования их через мембраны, поры которых размером около 1 им пропускают молекулы воды, задерживая гидратированные ионы солей или молекулы недиссоциированных соединений. По сравнению с другими методами очистки гиперфильтрация требует малых энергозатрат: установки для очистки конструктивно просты и ком-

Рис. 5.15.

пактны, легко автоматизируются; фильтрат имеет высокую степень чистоты и может быть использован в оборотных системах водоснабжения, а сконцентрированные примеси сточных вод легко утилизируются или уничтожаются.

Для гиперфильтрации используют ацетатцеллюлозные, полиамидные и тому подобные полимерные мембраны с ресурсом работы до двух лет.

Эвапорация реализуется обработкой паром сточной воды с содержанием летучих органических веществ, которые переходят в паровую фазу и вместе с паром удаляются из сточной воды. Процесс эвапорации осуществляют в испарительных установках (рис. 5.16), в которых при протекании через эвапорационную колонну с насадками из колец Рашига навстречу потоку острого пара сточная вода нагревается до температуры 100 °С. При этом содержащиеся в сточной воде летучие примеси переходят в паровую фазу и распределяются между двумя фазами (паром и водой) в соответствии с урав

Рис. 5.16.

1 - 2 - теплообменник; 3 - эвапорационная колонна; 4 - трубопровод загрязненного пара; 5 - трубопровод подачи растворителя; 6 - колонна с насадками из колен Рашига для очистки отработанного пара; 7 - вентилятор; 8 - трубопровод повторно используемого очищенного пара; 9 - трубопровод отвода загрязненного летучими примесями растворителя; 10 - трубопровод отвода очищенной сточной воды; 11 - трубопровод подачи свежего пара

нением с" / с" = у, где сп и св - концентрации примеси в парс и сточной воде, кг/м3; у - коэффициент распределения. Для аммиака, этиламина, диэтиламина, анилина и фенола, содержащихся в сточной воде, коэффициент распределения соответственно равен 13, 20, 43; 5,5 и 2.

Выпаривание, испарение и кристаллизацию используют для очистки небольших объемов сточной воды с большим содержанием летучих веществ.

Биологическую очистку применяют для выделения тонкодисперсных и растворенных органических веществ. Она основана на способности микроорганизмов использовать для питания содержащиеся в сточных водах органические вещества (кислоты, спирты, белки, углеводы и т.п.). Процесс реализуется в две стадии, протекающие одновременно, но с различной скоростью: адсорбция из сточных вод тонкодисперсных и растворенных примесей органических веществ и разрушение адсорбированных веществ внутри клетки микроорганизмов при протекающих в них биохимических процессах (окислении или восстановлении). Обе стадии реализуются как в аэробных, так и в анаэробных условиях в зависимости от видов и свойств микроорганизмов. Биологическую очистку осуществляют в природных и искусственных условиях.

Сточные воды в природных условиях очищают на полях фильтрации, полях орошения и в биологических прудах . Очистку и бытовых, и производственных сточных вод на нолях фильтрации и полях орошения в настоящее время используют очень редко в связи с малой пропускной способностью единицы площади полей и непостоянством состава производственных сточных вод, а также из-за возможности попадания на поля токсичных для их микрофлоры примесей.

Биологические пруды используют для очистки и доочистки сточных вод суточным расходом не более 6000 м3. Применяют пруды с естественной и искусственной аэрацией.

Биологические фильтры широко используют для очистки и бытовых, и производственных сточных вод. В качестве фильтровального материала для загрузки биофильтров применяют шлак, щебень, керамзит, пластмассу, гравий и т.п. Существуют биофильтры с естественной подачей воздуха; их применяют для очистки сточных вод суточным расходом не более 1000 м3. Для очистки производственных сточных вод больших расходов и сильно концентрированных используют биофильтры с принудительной подачей воздуха (рис. 5.17).

Нормальный ход процесса биологической очистки сточных под устанавливается после образования на загрузочном материале биофильтра биологической пленки, микроорганизмы которой адаптировались к органическим примесям сточных вод. Период адаптации обычно составляет 2-4 недели, хотя в отдельных случаях он может достигать нескольких месяцев. Для оценки состава сточных вод в процессе биологической очистки используют биологическую потребность воды в кислороде (ВПК) - количество кислорода, необходимое для окисления всех органических примесей, содержащихся в единице объема сточной воды.

Аэротенки, используемые для очистки больших расходов сточных вод, позволяют эффективно регулировать скорость и полноту протекающих в них биохимических процессов, что особенно важно для очистки промышленных сточных вод нестабильного состава. Окислительная мощность аэротенков

Рис. 5.17.

1 - трубопровод подачи исходной сточной воды; 2 - водораспределительные устройства; трубопровод отвода очищенной сточной воды; 5 - гидравлический затвор; 6 - трубопровод подвода сжатого воздуха; 7 - корпус фильтра

составляет 0,5-1,5 кг/м3 в сутки. В зависимости от состава примесей сточных вод и требуемой эффективности очистки применяют аэротенки с дифференцируемой подачей воздуха, аэротенки-смесители с дифференцируемой подачей сточной воды и аэротенки с регенераторами активного ила.

При ВПК > 0,5 кг/м3 используют аэротенки с дифференцируемой (сосредоточенной) подачей смеси сточной воды и активного ила в начале сооружения (рис. 5.18).

Воздух, интенсифицирующий процесс окисления органических примесей, распределяется равномерно по всей длине аэротенка. Диспергирование воздуха в очищаемой сточной воде осуществляют механическими или пневматическими аэраторами. Окислительная мощность аэротенков существенным образом зависит от концентрации активного ила в сточной воде. При очистке производственных сточных вод концентрация ила обычно составляет 2-3 кг/м3 по сухому веществу.

Окситенки обеспечивают более интенсивный процесс окисления органических примесей по сравнению с аэротенками за счет подачи в них технического кислорода и повышения концентрации активного ила. Для увеличения коэффициента использования подаваемого в объем сточной воды кислорода реактор окситенка герметизируют. Очищенная от органических примесей сточная вода из реактора поступает в

Рис. 5.18.

1 - трубопровод подачи сточной воды; 2 - первичный отстойник; 3 - трубопровод подачи активного ила или повторного использования; 4 - аэротенк; 5 - трубопровод отвода отработавшего ила; 6 - трубопровод отвода очищенной сточной воды; 7 - вторичный отстойник; 8 - трубопровод подвода сжатого воздуха

илоотделитель, в котором происходит выделение из нее отработанного ила.

При проектировании окситенков необходимо предусматривать мероприятия по обеспечению их пожаровзрывобезопасности с учетом вредных и опасных факторов, имеющих место при эксплуатации систем с использованием газообразного кислорода.


Защита гидросферы организована в России с учетом особенностей поступления в водные объекты примесей и включает регулирование: поверхностного стока на водосборе; качества сточных вод; качества воды в объектах.
Вынос примесей в водные объекты с площади водосбора пропорционален поступающему в них стоку воды. Поэтому уменьшение диффузных (рассредоточенных) поступлений примесей достигается реализацией мероприятий, способствующих задержанию стока на водосборе. К таким мероприятиям относятся повышение степени залесенности водосборов, лиманное орошение, вспашка сельскохозяйственных полей в осенний период. При этом следует иметь в виду, что в горных районах лес незначительно уменьшает вынос веществ вследствие крайне небольшой мощности четвертичных отложений и слабой их регулирующей способности. В равнинных районах с увеличением лесистости водосбора (отношение площади водосбора, покрытой лесом, к общей площади водосбора) происходит уменьшение поверхностного стока и уменьшение выноса веществ. На малых реках в связи с небольшим врезом русла в породы водосбора лес способствует большему переводу поверхностных стоков в подземные и уменьшению выноса веществ в сравнении со средними и большими реками. Однако масштабы применения этих мероприятий весьма ограниченны и реализуются лишь на отдельных небольших реках. В степных и полупустынных регионах России определенный эффект в задержании примесей на водосборе оказывают лесозащитные полосы.
Важная роль в задержании примесей на водосборе принадлежит лиманам (пониженные или специально обвалованные участки сельскохозяйственных полей, затопляемые водой в весенний период). Уменьшение выноса примесей с водосбора возможно также с помо

щью щелевания и устройства траншей, заполняемых легкофильтру- ющими материалами. Однако большая трудоемкость и капиталоемкость таких сооружений не способствуют их широкому применению.
Регулирование поступления примесей с хозяйственно-бытовыми и производственными сточными водами осуществляется с помощью комплекса очистных сооружений. Состав сооружений и технологическая схема их размещения определяются составом и расходом сточных вод, необходимой глубиной очистки и устанавливается в процессе проектирования. Глубина очистки сточных вод очистными сооружениями и вынос примесей в водные объекты устанавливаются на основе нормативов предельно допустимых (ПДС) и временно согласованных сбросов (ВСС).
Обеспечение требуемого качества вод осуществляется процессами подготовки и очистки. Подготовка воды включает процессы: коагулирования, предварительную очистку, фильтрацию, обеззараживание, дезодорацию и удаление токсичных веществ. Очистка сточных вод производится деструктивными методами, основанными на разрушении примесей, и регенеративными методами, основанными на извлечении и последующей утилизации содержащихся в воде ценных компонентов.
Для очистки сточных вод используются практически все достижения современной науки и техники. Методы, базирующиеся на этих достижениях, включают: механические, биохимические, физикохимические, термохимические и термические.
Выбор метода и соответствующего оборудования определяется характеристиками загрязнений, их концентрацией, физическими и химическими свойствами, а также требованиями эффективности очистки сбросов.
Механическая очистка сточных вод. Взвешенные в воде примеси имеют широкий диапазон размеров, а их удаление требует часто нескольких ступеней очистки. Самые крупные примеси осаждаются методом процеживания воды через решетки и сита, размещаемые в коллекторах сточных вод перед отстойниками. Последующая очистка проводится методом отстаивания, т.е. осаждения под действием гравитационных сил. Для этого используются песколовки, отстойники и осветлители.
Песколовки применяют для удаления из воды частиц минеральных и органических примесей с размерами не менее 0,2 мм. В отстойниках осаждение частиц происходит под действием сил тяжести. Наиболее эффективны осветлители (рис. 15.2), в которых механическое удаление частиц проводится после обработки воды
коагулянтами. Коагулирование - это физико-химический процесс агломерации мелких частиц под действием сил молекулярного притяжения, возникающих при обработке воды солями многовалентных металлов. В результате устраняется мутность и цветность воды, а в ряде случаев снижается интенсивность вкуса и запахов. В качестве коагулянтов применяют алюминийсодержащие вещества (сернокислый глинозем AI2(S04)3) пН20 и др.), соединения железа (железный купорос FeS04 7Н20 и др.), ряд других веществ. Эффективность коагуляции увеличивается при обработке воды флокулянтами - высокомолекулярными органическими или минеральными соединениями, которые образуют макромолекулы, связывающие гидроксиды коагулянтов с примесями с выпадением крупных хлопьев. К ним относятся полиакриламид, активная кремниевая кислота, гашеная известь, едкий натр, кальцинированная сода, хлорная известь и др.
Система обработки воды включает узел для приготовления коагулянта, дозатор, смеситель, камеру хлопьеобразования и отстойник. В осветлителях смеситель и камера хлопьеобразования совмещены, а функции отстойника выполняет осадкоуплотнитель. Воду с добавкой коагулянта подают в его нижнюю часть до тех пор, пока на высоте сечения I-I не наступит равенство скорости восходящего потока и скорости выпадения из него хлопьев коагулянта с удерживаемыми им частицами взвеси. Через находящийся выше сечения I-I слой взвешенного осадка фильтруется осветленная вода, поступающая в желоб, а осадок удаляется в осадкоуловитель для дальнейшей переработки.
Для удаления из сточных вод тонкодисперсных примесей применяют фильтрацию через пористые перегородки, изготавливаемые из минеральных (металлические сетки, стекловолокно, насыпной слой и др.) или органических веществ (синтетические волокна, ткани). По принпипу действия различают поверхностные и глубинные фильтры. В первых - частицы оседают на пористую перегородку, во вторых - после оседания частицы адсорбируются перегородкой. Если количество очищаемых сточных вод достаточно велико, то приме
няют фильтры с зернистым слоем. Последние получили наибольшее распространение из-за простоты конструкции, надежности и достаточно высокой эффективности. Зернистый фильтр представляет собой резервуар, в нижней части которого имеется дренажное устройство для отвода воды. На него укладывают слой поддерживающего материала, а затем фильтрующий слой.
Зернистые фильтры подразделяют на медленные и скоростные, открытые и закрытые. В медленных фильтрах фильтрация идет через осадок загрязнений, образующихся на поверхности зерен загрузки в больших порах материала. В быстрых фильтрах пленка загрязнений не образуется, и фильтрование идет в толще слоя загрузки, где частицы задерживаются на зернах фильтрующего материала за счет сил адгезии. В таких фильтрах сточная вода подается в специальную систему с добавкой коагулянта (рис. 15.3). После фильтрации очищенная вода удаляется через дренажное устройство. Его изготавливают из пористо-бетонных сборных плит, на которых послойно размещают фильтрующий материал с высотой загрузки 1,5-2 м. После засорения слоя осадком он периодически очищается подачей снизу вверх промывных вод.
Особенностью фильтров с подвижной загрузкой (кварцевый песок с зернами 1,5-3 мм или гранитный щебень с зернами 3-10 мм) является вертикальное расположение фильтрующей перегородки и
горизонтальное движение очи-
щаемой от примесей воды. При скорости фильтрации 15 м/ч эффективность очистки составляет 50-55%. Загрязненный материал фильтра очищается от осадка в отдельном промывном устройстве, поэтому фильтр работает непрерывно, но из-за абразивного износа трубопроводов и измельчения и уноса частиц фильтрующего материала применение таких фильтров пока ограниченно.
В промышленных очистных сооружениях широко применяются центробежные сепараторы - гидроциклоны (рис. 15.4). Напорные гидроциклоны исполь

зуют для осаждения твердых примесей.
Эти аппараты имеют высокую производительность и эффективность очистки до 70%.
Сточная вода тангенциально подается в аппарат и при вращении под действием центробежной силы разделяется на два потока.
Часть жидкости с крупными частицами движется у стенок по винтовой спирали вниз к сливному отверстию. Другая часть (осветленная) поворачивается и движется вверх вблизи оси циклона к кольцевому лотку. Гидро- циклоны изготавливаются диаметром 0,7 м и высотой, примерно равной диаметру. При больших объемах очищаемых сточных вод они объединяются в мультигидроциклоны.
Для удаления из сточных вод плохо отстаивающихся нерастворимых примесей применяют метод флотации. По сравнению с отстаиванием он обеспечивает селективное выделение примесей, большую скорость процесса, высокую (95-98 %) степень очистки и возможность рекуперации удаляемых веществ. Кроме того, при флотации сточные воды аэрируются, в них снижается содержание легко окисляемых веществ и ПАВ, бактерий и микроорганизмов. Флотаторы просты по конструкции, надежны и обеспечивают непрерывный процесс очистки.
В процессе флотации пузырек воздуха сближается с гидрофобной твердой частицей и всплывает вместе с ней на поверхность воды, где образуется пенный слой, который содержит повышенную концентрацию частиц примесей и периодически удаляется из флотатора. Эффективность флотации зависит от природы примесей, смачиваемости частиц водой и характера взаимодействия реагентов с их поверхностью. Поверхностно-активные вещества (масла, жирные кислоты и их соли, амины, меркаптаны и др.) являются реагентами- собирателями и, адсорбируясь на частицах, понижают их смачиваемость, делая их гидрофобными. Поэтому прочность прилипания частицы к пузырьку максимальна.
Наиболее распространены следующие способы флотации сточных вод: с выделением воздуха из растворов, с механическим дис
пергированием воздуха, с подачей воздуха через пористую перегородку, электрофлотация, химическая флотация.
Первый способ реализуется с помощью напорных установок, применяемых для очистки сточных вод с содержанием взвеси до 4- 5 г/дм3. Процесс идет в две стадии: насыщение воды воздухом под давлением 0,15-0,4 МПа и выделение растворенного газа - при атмосферном давлении. Производительность такого аппарата лежит в пределах от 5 до 2000 м3/ч по очищенной воде (с учетом добавок коагулянтов). Основным элементом установки напорной флотации
Сточную воду, насыщенную воздухом, подают в камеру, где давление близко к атмосферному. Выделяющиеся пузырьки воздуха захватывают частицы примесей и всплывают вверх. Пенный слой с твердыми включениями донным скребком удаляют в шламоприем- ник, а осветленную воду отводят на последующее использование. Твердые частицы, осевшие на дно камеры, донным скребком сдвигают в нижнюю часть камеры и удаляют из аппарата.
Флотация с механическим диспергированием воздуха широко используется в процессах обогащения полезных ископаемых, а в последнее время и для очистки сточных вод с содержанием взвеси более 2 г/дм3. Диспергирование воздуха обеспечивается турбинками насосного типа - импеллерами (дисками с обращенными вверх лопатками). Флотация с использованием пористых керамических пластин обеспечивает высокое качество очистки, но ввиду засорения и зарастания отверстий пористого материала, а также трудностей в подборе пористых перегородок с одинаковыми отверстиями этот способ нашел ограниченное применение.
Для тонкой и сверхтонкой очистки сточных вод применяются методы обратного осмоса и ультрафильтрации. Данные методы реализуются в процессе фильтрования сточной воды через полупроницаемые мембраны при давлении Р, превышающем осмотическое. Мембраны пропускают молекулы растворителя, задерживая молеку
лы растворенного вещества, размеры которых не больше молекул растворителя (обратный осмос при давлении до 10 МПа) или на порядок их больше (ультрафильтрация при Р= 0,1-0,5 МПа). Обычно мембраны изготавливают из ацетатцеллюлозы. Установка обратного осмоса весьма проста и экономична, имеет высокую эффективность, но требует периодической замены мембран при заметном возрастании у поверхности концентрации растворенного вещества, а также работы аппаратуры при повышенных давлениях, что требует ее специального уплотнения. Обратный осмос используют для разделения растворов, содержащих частицы с размерами 0,0001-0,001 мкм, а ультрафильтрацию - для частиц с размерами 0,001-0,02 мкм. Данные методы рекомендуется применять при содержании в электролитах: одновалентных солей - не более 10%, двухвалентных - 15, многовалентных - 20%. Для органических веществ эти пределы несколько выше.
Установки мембранного разделения собирают из большого числа отдельных модулей в батареи. При небольших производительностях модули соединяют параллельно. Для увеличения выхода фильтрата модули собирают последовательно-параллельно. В случае одновременного разделения органических и неорганических веществ используют обратный осмос и ультрафильтрацию. При этом в процессе ультрафильтрации получают концентрат органических веществ, а затем - в процессе обратного осмоса - концентрат неорганических веществ и чистую воду.
Биохимическая очистка сточных вод. Процесс очистки основан на способности микроорганизмов использовать многие растворенные в сточных водах органические и неорганические соединения для питания в процессе жизнедеятельности. Известны аэробные и анаэробные методы биохимической очистки. Первая группа методов основана на использовании организмов, для жизнедеятельности которых необходим дополнительный приток кислорода при температурах 20-40 °С. При этом методе аэробные микроорганизмы культивируются в активном иле или биопленке. Анаэробные методы реализуются без доступа кислорода и используются главным образом для обезвреживания осадков.
Активный ил включает живые организмы (бактерии, простейшие черви, плесневые грибы, дрожжи и др.), сообщество которых образует биоценоз, и твердый субстрат. Активный ил формирует аморфную коллоидную систему, имеющую достаточно стабильный состав, несмотря на значительные отличия сточных вод различных производств. Сухое вещество активного ила состоит на 70-90% из

органических и на 10-30% из неорганических веществ. Субстрат, содержание которого в иле может доходить до 40%, включает твердую отмершую часть остатков водорослей и различные твердые остатки. При очистке промышленных стоков в активном иле преобладают аэробные микробы.
Основную роль в процессе биохимической очистки сточных вод играют микроорганизмы, с помощью которых протекают процессы, заканчивающиеся окислением вещества с выделением энергии и синтезом новых веществ с затратами энергии. Скорость биохимических реакций определяется активностью ферментов (энзимов), зависит от температуры, pH среды и присутствия в сточной воде различных веществ. Для каждого фермента существует оптимальная температура, ниже или выше которой скорость реакции падает. Активаторами ферментов являются катионы Са2+, Mg2+, Мп2+, а ингибиторами, снижающими активность ферментов, могут быть, например, соли тяжелых металлов.
Аэробные процессы биохимической очистки могут проводиться как в природных условиях, так и в искусственных сооружениях. В естественных условиях очистка происходит на полях орошения, полях фильтрации и в биологических прудах. Искусственными сооружениями являются аэротенки и биофильтры разной конструкции, в которых процессы очистки идут с большей скоростью, чем в природных условиях.
Поля орошения являются специально подготовленными земельными участками, используемыми одновременно для очистки сточных вод и в агрокультурных целях. Процессы очистки идут здесь за счет действия почвенной микрофлоры, солнца, воздуха и жизнедеятельности растений. Поля фильтрации аналогичны полям орошения, но используются только для биологической очистки сточных вод. Сточные воды на очистку подают через распределительные системы в подпочвенный слой поля орошения, что наиболее полно реализует полезные свойства сточных вод как удобрений.
Биологические пруды представляют собой каскад из 3-5 ступеней водоемов, через которые медленно протекает очищаемая вода. Пруды с естественной аэрацией имеют глубину 0,5-1 м, хорошо прогреваются солнцем и заселяются водными организмами и водорослями, что способствует интенсификации процессов окисления сточных вод. Пруды с искусственной аэрацией имеют глубину более 1 м. Они снабжены системами принудительной подачи и распределения воздуха в целях обеспечения интенсивного подвода кислорода и осуществления массообменных процессов. Пруды используют в комп- 426

лексе с другими очистными сооружениями - как для биологической очистки, так и доочистки сточных вод.
Очистку в искусственных условиях проводят с помощью аэротенков или биофильтров. Аэротенк - это открытый железобетонный аэрируемый резервуар, в котором очистка идет по_мере протекания через него аэрированной смеси сточной воды и активного ила (рис. 15.6). Сточную воду сначала направляют в первичный отстойник, в который для улучшения осаждения взвешенных частиц по-

Рис, 15.6. Схема установки биологической очистки:
1 - первичный отстойник; 2 - преаоратор-усреднитель; 3 - аэротенк; 4 - регенератор; 5 - вторичный отстойник

дают часть активного ила. Из отстойника осветленная вода поступает в преаэратор-усреднитель, в который подают избыточный ил из вторичного отстойника. Здесь сточные воды предварительно аэрируются воздухом и при необходимости добавляются нейтрализующие добавки и питательные вещества. После усреднителя сточная вода поступает в аэротенк, где циркулирует активный ил. Биохимические процессы в аэротенке проходят в два этапа: адсорбция активным илом органических веществ и минерализация легко окисляющихся веществ при интенсивном потреблении кислорода; доокисление медленно окисляющихся органических веществ с менее интенсивным потреблением кислорода и регенерация активного ила в отдельной секции аэротенка - регенераторе; после этого сточная вода с илом поступает во вторичный отстойник, где происходит отделение ила от воды.
Существует множество различных конструкций аэротенков, отличающихся числом коридоров для прохода воды, организацией гидродинамического режима подачи сточных вод и воздуха, способом регенерации активного ила, количеством ступеней очистки, нагрузкой на активный ил и другими характеристиками.
Биофильтры представляют собой корпусные сооружения с кусковой насадкой и распылительными устройствами для сточной воды и воздуха. Сточная вода фильтруется через насадку, покрытую пленкой микроорганизмов. В процессе окисления сточной воды биопленка наращивает свою массу, а отработанная биопленка смывается с насадки и выводится из биофильтра. В качестве насадки применяют щебень, гравий, шлак, керамзит, металлические и пластмассовые сетки и др. Разнообразные конструкции биофильтров определяются требованиями к очистке (полной или неполной), подачей воздуха для аэрации (естественной или искусственной), с рециркуляцией или без рециркуляции сточных вод, степенью очистки (в одну или несколько ступеней).
Для первичной очистки высококонцентрированных промышленных сточных вод (БПКполн = 4-5 г/дм3), содержащих органические вещества, а также для образования осадков от биохимической очистки применяют анаэробные методы обезвреживания. Органические вещества разрушаются анаэробными бактериями в процессе брожения. Процесс брожения проводят в метанотенках - герметически закрытых емкостях с устройствами для ввода несброженного и отвода сброженного осадка. Степень сбраживания (распада органических веществ) в среднем составляет около 40%, состав выделяющихся газов: 63-65% метана, 32-34% С02. Выделяющиеся газы обычно сжигают в топках котлов.
Процесс биохимической очистки протекает более устойчиво и полно при совместной очистке промышленных и бытовых стоков, поскольку последние содержат биогенные элементы, а также разбавляют производственные сточные воды.
Физико-химическая очистка сточных вод. Адсорбцию применяют для глубокой очистки сточных вод от растворенных органических примесей (фенолов, ПАВ и др.) после биохимической очистки, а также если концентрация таких примесей невелика, а сами они биологически не разлагаются или сильно токсичны. Метод высокоэффективен (80-95%), позволяет очищать сточные воды, содержащие несколько веществ, допускает рекуперацию этих веществ. Адсорбционная очистка может быть регенеративной, т. е. с извлечением вещества из адсорбента и его утилизацией, и деструктивной, при
которой адсорбент, содержащий извлеченные из сточных вод вещества, уничтожается. В качестве адсорбентов используют активированный уголь (наиболее универсален), шлаки, глины, некоторые синтетические вещества и др.
В общем случае процесс адсорбции складывается из трех стадий. Перенос вещества из сточной воды на поверхность адсорбента. Собственно адсорбция. Перенос вещества внутри зерен адсорбента.
При адсорбции поглотитель насыщается адсорбируемым веществом. Со снижением эффективности очистки адсорбцию прекращают, а адсорбент подвергают регенерации, десорбируя из него поглощенные вещества. Процесс адсорбции ведут при интенсивном перемешивании адсорбента со сточной водой с последующим фильтрованием воды через слой адсорбента либо в псевдоожиженном слое на установках периодического или непрерывного действия. Более эффективны установки непрерывного действия.
Адсорбер с использованием способа фильтрации воды через слой адсорбента представляет собой колонну, в которой на решетке уложен сначала слой гравия, а затем слой активированного угля. Очищаемая вода подается снизу вверх, а пар для регенерации адсорбента - сверху вниз. Адсорберы с псевдоожиженным слоем (рис. 15.7) действуют иначе. Активированный уголь через воронку по трубе непрерывно подается под распределительную решетку с отверстия-

Рис. 15.7. Одноярусный адсорбер: I - решетка; 2 -труба; 3- колонна; 4 -воронка; 5 - сборник

ми 5-10 мм. Сточная вода захватывает зерна адсорбента и проходит вместе с ними через решетку, над которой образуется псевдосжижен- ный слой, где идет адсорбция. Избыток угля поступает в сборник, а из него на регенерацию. Очищенную воду через желоба отводят из колонны.
Адсорбированные ценные вещества извлекают десорбцией при регенерации активированного угля насыщенным или перегретым паром при температуре 200-300 °С и давлении 0,3-0,6 МПа или инертным газом при 120-130 °С. После десорбции пар конденсируют, а извлеченные вещества направляют на переработку. В случаях, когда адсорбированное вещество не представляет ценности, проводят деструктивную регенерацию активированного угля. Она осуществляется либо химическим методом (окисление хлором, озоном и др.), либо термическим методом (обработка в печах при температурах 700-800 °С в бескислородной среде смесью продуктов сгорания и водяного пара).
Ионообменная очистка сточных вод применяется для извлечения из сточных вод металлов (Zn, Си, Сг, Ni, Pb, V, Мп и др.), а также соединений мышьяка, фосфора, цианистых соединений и радиоактивных веществ. Ионный обмен используется в процессах водоподготовки для обессоливания воды. По завершении процесса ионного обмена иониты регенерируют.
Процессы ионообменной очистки проводят в установках периодического и непрерывного действия. Последние наиболее предпочтительны для промышленных условий, поскольку позволяют при использовании компактного оборудования снизить удельный расход ионитов, реагентов для их регенерации и промывной воды. Установки непрерывного действия состоят из нескольких ионообменных аппаратов (колонн) с катионитом и анионитом, работающих с движущимся или с кипяшим слоем ионита.
При очистке сточных вод, содержащих фенолы, масла, нефтепродукты, ионы металлов, применяют методы экстракции. В общем случае экстракция более целесообразна, чем адсорбция, если концентрация извлекаемых веществ выше 3-4 г/дм3. Процесс очистки состоит из трех стадий. Сначала сточная вода интенсивно смешивается с экстрагентом (органическим растворителем) с образованием двух жидких фаз: экстракта (экстрагент с извлекаемым веществом) и рафината (сточная вода и экстрагент). Вторая стадия - разделение экстракта и рафината, третья стадия - регенерация экстрагента из экстракта и рафината. Для очистки сточных вод наиболее часто применяют процессы противоточной экстракции.
Регенерация отработавшего экстрагента проводится с применением вторичной экстракции (с другим растворителем), а также выпариванием, дистилляцией, химическим взаимодействием или осаждением. Если экстрагент не следует возвращать в цикл, то после извлечения из него ценных веществ он может быть использован для технологических целей или в качестве топлива (если экстрагированное вещество не является ценным). Для предотвращения загрязнения сточной воды частично растворимым в ней экстрагентом и сокращения потерь экстракт удаляют из рафината адсорбцией, отгонкой отработанным паром или отходяшими дымовыми газами.
Жидкостная экстракция занимает особое место в процессах извлечения ценных металлов из сточных вод и обеспечивает их концентрирование для последующей рекуперации. В качестве экстрагентов применяют органические кислоты, эфиры, спирты, кетоны, амины и др., а реэкстрагентов - водные растворы кислот и оснований.
Высококачественное удаление из сточных вод токсичных и ценных компонентов производится электрохимическими методами. Очистку проводят без использования химических реагентов на автоматизированных установках с применением процесса анодного окисления и катодного восстановления, электрокоагуляции, электрофлокуляции и электродиализа, протекающих при пропускании постоянного тока через очищаемую воду.
Анодное окисление и катодное восстановление проводят в электролизерах. На аноде ионы отдают электроны (реакция окисления), а на катоде происходит присоединение электронов (реакция восстановления). При окислении вещества, находящиеся в сточных водах, полностью распадаются с образованием С02, NH3 и Н20 или образуют простые нетоксичные соединения, которые затем удаляют другими методами. Катоды изготавливают из стали, графита, металлов, покрытых вольфрамом, молибденом. Для анодов используют электролитически нерастворимые материалы (графит, магнетит и др.). Анодное окисление широко применяют, например, для очистки сточных вод, содержащих простые и комплексные соединения цианидов с концентрацией их до 600 мг/дм3. Катодное восстановление проводят для удаления из сточных вод ионов металлов с получением осадков, для перевода загрязняющего компонента в менее токсичную форму или в легко выводимое из воды соединение (осадок, газ).
Электрокоагулятор представляет собой ванну с электродами. При прохождении между ними сточной воды происходит ее электролиз, поляризация частиц, электрофорез, окислительно-восстано

вительные процессы и взаимодействие продуктов электролиза друг с другом.
В электрофлотаторах используется эффект удаления взвешенных частиц пузырьками газа, образующимися при электролизе воды (на аноде - кислорода, на катоде - водорода). Более эффективная очистка достигается при использовании растворимых электродов, в результате чего образуются, кроме пузырьков газа, еще и хлопья коагулянтов. Электрофлотационные установки применяют в случаях, когда обычная флотация не дает требуемого качества очистки.
Электродиализ для очистки промышленных сточных вод применяется крайне редко, хотя считается перспективным способом. Данный процесс основан на разделении ионизированных веществ под действием электродвижущей силы, создаваемой в растворе по обе стороны мембран - анионообменной и катионообменной. Первая мембрана пропускает в анодную зону анионы, а вторая - катионы в катодное пространство. Простейшая конструкция установки представляет собой ванну, разделенную на три камеры. В среднюю камеру поступает сточная вода, а в боковые камеры, где расположены соответственно катод и анод - чистая вода. При прохождении тока на аноде выделяется кислород и образуется кислота, а на катоде выделяется водород и образуется щелочь. За счет диффузии в среднюю камеру поступают ионы Н+ и ОН-, образуя воду. Применение метода ограничено тем, что при электродиализе из-за концентрационной поляризации на поверхности мембран осаждаются соли, что ухудшает показатели очистки.
К химическим реагентным методам относятся нейтрализация, окисление и восстановление компонентов сточных вод. Данные методы предполагают использование различных реагентов, что связано с весьма значительными затратами. Поэтому их применение целесообразно лишь в некоторых замкнутых системах водоснабжения перед биологической очисткой или после нее (для доочистки сточных вод). Нейтрализацию используют для подготовки сточных вод, содержащих кислоты или щелочи перед подачей в технологический процесс или для сброса в водоем. Нейтрализацию обычно проводят: смешением кислых и щелочных сточных вод (весьма перспективный способ для ряда производств) с добавлением реагентов, фильтрованием кислых вод через нейтрализующие материалы, абсорбцией кислых газов щелочными растворами или абсорбцией аммиака кислыми водами.
Выбор способа зависит от особенностей сточных вод, отходов, побочной продукции и др., образующихся как на данном, так и на соседних с ним предприятиях. Если в производстве формируются кислые и щелочные воды, не загрязненные другими компонентами (или очищенные от таковых), то их смешивают в автоматизированной усреднительной установке до 6,5 lt;рН lt; 8,5. Осадок обезвоживают на шламовых полях или в вакуум-фильтрах. При окислении загрязнения переводятся в менее токсичные и удаляются из воды. В качестве окислителей применяют хлор, диоксид хлора, хлорат кальция, гипохлориты кальция и натрия, озон, кислород воздуха и др. Легко восстанавливаемые вещества (например, вещества, содержащие шестивалентный хром) переводят в нерастворимые соединения, обычно гидрооксиды, которые затем осаждают в щелочной среде. Восстановителями являются активированный уголь, сульфат закиси железа, тиосульфат натрия, диоксид серы, пиритный огарок и др.
Сточные воды ряда производств загрязнены летучими примесями органического и неорганического происхождения, в том числе сероводородом, диоксидом серы, диоксидом углерода и др. Удаление таких примесей осуществляется десорбцией. При пропускании инертного газа, малорастворимого в воде (воздух, диоксид углерода, дымовые газы и др.) через сточную воду летучий компонент диффундирует в газовую фазу, поскольку парциальное давление газа над раствором больше, чем в окружающем воздухе. Десорбцию осуществляют в тарельчатых, каскадных и распылительных колоннах. Количество вещества, перешедшего в газовую фазу, растет с увеличением температуры среды, поверхности контакта фаз и коэффициента массопереноса. Десорбированное из воды вещество направляют на адсорбцию или каталитическое сжигание.
В некоторых сточных водах содержатся дурно пахнущие вещества (сероводород, углеводороды, аммиак, альдегиды и пр.). Для их дезодорации можно использовать ряд способов: аэрацию, хлорирование, ректификацию, дистилляцию, обработку продуктами сжигания топлива, окисление кислородом под давлением, озонирование, экстракцию, адсорбцию и микробиологическое окисление. Наиболее эффективной является аэрация воды при продувании ее сжатым воздухом (процесс десорбции). Применение иных способов связано со специфическими особенностями содержащихся в воде примесей. Например, для эффективной очистки воды от сероводорода окислением кислородом воздуха при атмосферном давлении процесс проводят в присутствии катализатора (железной стружки, графитового материала и др.) в аэрационном бассейне, продуваемом сжатым воздухом. При этом часть сероводорода окисляется до элементной серы, а другая часть отдувается воздухом в адсорбер с активированным углем. После насыщения активированный уголь регенерируют сульфатом аммония.
Присутствие в сточных водах растворенных газов существенно затрудняет очистку таких вод и их использование. Растворенные газы удаляют дегазацией, осуществляемой химическим, термическим или десорбционным (аэрационным) методами. Выбор метода зависит от растворенного газа и его концентрации в воде. Наиболее распространенным способом на предприятиях является аэрация, проводимая в зависимости от требуемой производительности в пленочных, насадочных, барботажных или вакуумных дегазаторах.
Термохимические и термические методы обезвреживания сточных вод. Особое место в технологиях очистки сточных вод занимают методы их обезвреживания от содержащихся минеральных солей Са, Mg, Na и др., а также органических соединений. Термические методы реализуются рядом способов: концентрированием сточных вод с последующим выделением твердых веществ; окислением органических примесей в присутствии катализатора; жидкофазным окислением органических веществ; огневым обезвреживанием,
Концентрирование применяют для удаления из воды минеральных солей. Для этого используют испарительные (выпарные) установки и установки вымораживания, позволяющие получить концентрированные водные растворы солей. Последующая обработка этих растворов в кристаллизаторах с отделением кристаллов от маточного раствора на фильтрах и сушка в распылительных (или аналогичных по назначению) сушилках позволяет получать твердый продукт, имеющий высокую потребительную стоимость.
Для обезвреживания сточных вод с небольшим содержанием органических примесей применяют термоокислительную обработку жидкофазным, парофазным каталитическим окислением или огневым методом. Окисление примесей осуществляют кислородом воздуха при повышенных температурах с образованием нетоксичных соединений.
Жидкофазное окисление применяют при наличии в сточных водах достаточного количества органических соединений. Процесс проводят при температурах 100-350 °С и давлении 2-28 МПа. Сначала сточную воду смешивают с воздухом, нагнетаемым в нее компрессором, и насосом подают в теплообменник. Подогретая теплом отходящей очищенной воды сточная вода подается затем для дальнейшего нагрева в печь. Нагретая до заданной температуры вода поступает в реактор, где идет процесс окисления, сопровождающийся значительным тепловыделением. Продукты окисления (пар, газы, зола) и воду направляют в сепаратор, где газы отделяют от жидкости и направляют на утилизацию тепла, а воду с золой пропускают через теплообменник и фильтр для отделения золы. Данный метод отличается простотой, гибкостью и позволяет очищать большие количества сточных вод. Недостатками являются неполное окисление некоторых токсичных веществ (необходимо комбинирование с другими методами) и высокая коррозия оборудования в кислых средах. />Парофазное каталитическое окисление - это гетерогенный процесс окисления летучих органических веществ кислородом воздуха при повышенной температуре. Процесс интенсивно протекает в паровой среде контактных аппаратов в присутствии медно-хромового, цинк-хромового и других катализаторов. Степень обезвреживания достигает 99,8% при высокой производительности установки. Сточную воду подают в выпарной аппарат, откуда «упаренная» вода поступает в центрифугу, из которой обезвоженный осадок направляют на обезвреживание сжиганием в печи. Водяной пар с летучими соединениями подают в теплообменник, где он подогревается теплом парогазовой смеси, отходящей из контактного аппарата. После теплообменника пары смешивают с горячим воздухом и направляют в контактный аппарат для окисления. Продукты сжигания осадка из печи поступают в котел-утилизатор, а вырабатываемый пар подается в выпарной аппарат. Основным недостатком установки является возможность отравления катализаторов соединениями фтора, фосфора, серы (которые должны предварительно удаляться из сточной воды).
Из термических методов огневой является наиболее универсальным и эффективным. Он реализуется в процессе распыления сточных вод в топочных газах, имеющих температуру 900-1000 вС. При этом вода полностью испаряется, примеси выгорают, а минеральные вещества образуют твердые или оплавленные частицы. Для сжигания используют печи различных конструкций: камерные, циклонные, с псевдосжиженным слоем. Наиболее эффективными и имеющими высокую производительность являются циклонные печи. В них, благодаря вихревому характеру движения газового потока и подаче распыленной жидкости в такой поток, интенсивно развиваются явления тепло- и массопереноса. Циклонные печи оборудуются системами рекуперации тепла и очистки отходящих газов. Недостатком таких печей является большой унос солей газовым потоком. Эти

соли образуются при термической обработке сточных вод, содержащих оксиды Са, Mg, Ва, К, Na и другие вещества, которые могут взаимодействовать с продуктами сгорания, например: MgO + С02 = = MgC03.
Относительная простота технологий огневого обезвреживания сточных вод и возможность достижения высоких степеней очистки делает эти методы весьма перспективными.

Источниками загрязнений сточных вод являются произ­водственные, бытовые и поверхностные стоки.

Производственные сточные воды образуются в результате использования воды в технологических процессах.

Бытовые сточные воды, имеющиеся в раковинах, сани­тарных узлах, душевых и тому подобном, содержат крупные примеси (остатки пищи, песок, фекалии и т.п.); примеси ор­ганического и минерального происхождения в нерастворенном виде, коллоидном и растворенном состояниях; различные, в том числе болезнетворные, бактерии. Концентрация указан­ных примесей в бытовых сточных водах зависит от степени их разбавления водопроводной водой.

Поверхностные сточные воды образуются в результате смывания дождевыми, снеговыми и поливочными водами за­грязнений, имеющихся на поверхности грунтов, на крышах и стенах зданий и т.п. Основными примесями поверхностных сточных вод являются механические частицы (земля, песок, камень, древесные и металлические стружки, пыль, сажа и нефтепродукты, масла, бензин, керосин, используемые в двигателях транспортных средств).

Системы водоснабжения промышленных предприятий в зависимости от водных и технологических процессов могут быть прямоточного, повторного (последовательного) и оборотного во­доснабжения. При выборе схемы станций очистки и технологи­ческого оборудования необходимо знать расход сточных вод и концентрацию содержащихся в них примесей, а также допус­тимый состав сточных вод, сбрасываемых в водоемы. Допус­тимый состав сточных вод рассчитывают с учетом "Правил охраны поверхностных вод". Эти правила предназначены для

предупреждения избыточного загрязнения сточными водами водных объектов. Они устанавливают нормы на ПДК веществ, состав и свойства воды водоема.

В зависимости от технологического назначения вода в системах водоснабжения может быть подвергнута различной об­работке: механической, физико-химической и биологической.

Механическая очистка сточных вод от взвешенных частиц проводится путем процеживания, отстаивания, обработки в поле действия центробежных сил и фильтрования.

Процеживание осуществляется в решетках и волокноуло-вителях. В вертикальных или наклонных решетках ширина прозоров обычно составляет 15-20 мм. Для выделения волок­нистых веществ из сточных вод целлюлознобумажных и текс­тильных предприятий применяют различные волокноуловите-ли, например с использованием перфорированных дисков или в виде движущихся сеток с нанесенным на них слоем волокни­стой массы.

Отстаивание основано на свободном оседании (всплывании) примесей с плотностью больше (меньше) плотности воды. Процесс отстаивания реализуют в песколовках, отстойниках и жироуловителях. Песколовки используют для очистки сточ­ных вод от частиц металла и песка размером более 0,25 мм; отстойники - для очистки сточных вод от механических час­тиц размером более 0,1 мм, а также от частиц нефтепродуктов. Очистку сточных вод в поле действия центробежных сил осуществляют в гидроциклонах и центрифугах.

Фильтрование применяют для очистки сточных вод от тон­кодисперсных примесей с малой их концентрацией. Его ис­пользуют как на начальной стадии очистки, так и после неко­торых методов физико-химической или биологической очистки. Физико-химические методы очистки используют, как пра­вило, для очистки от растворенных примесей. Основными из них являются флотация, экстракция, нейтрализация, сорбция, ионообменная и электрохимическая очистка, гиперфильтра­ция, эвапорация, выпаривание, испарение и кристаллизация.

Флотация предназначена для интенсификации процесса всплывания маслопродуктов при обволакивании их частиц пу­зырьками газа, подаваемого в сточную воду.

Экстракция сточных вод основана на перераспределении примесей сточных вод в смеси двух взаимно нерастворимых жидкостей (сточной воды и экстрагента).


8.1. Средства защиты окружающей среды (экобиозащитная техника)... 159

Нейтрализация сточных вод предназначена для выделения из них кислот, щелочей, а также солей металлов на основе кислот и щелочей. Нейтрализацию кислот и их солей осущест­вляют щелочами или солями сильных щелочей: едким натром, едким кали, известью, известняком, доломитом, мрамором, мелом, магнезитом, содой, отходами щелочей. Наиболее де­шевым и доступным реагентом для нейтрализации кислых сточных вод является гидроокись кальция (гашеная известь). Для нейтрализации сточных вод с содержанием щелочей и их солей можно применять серную, соляную, азотную, фосфор­ную и другие кислоты.

Сорбцию используют для очистки сточных вод от раство-римых примесей, в Качестве сорбентов берут любые мелкодис­персные материалы (золу, торф, опилки, шлаки, глину); наиболее эффективный сорбент - активированный уголь.

Ионообменную очистку применяют для обессоливания и очистки сточных вод от ионов металлов и других примесей, Очистку осуществляют ионитами - синтетическими ионооб­менными смолами, изготовленными в виде гранул размером 0,2-2 мм. Иониты изготовляют из нерастворимых в воде поли­мерных веществ, имеющих на своей поверхности подвижный ион (катион или анион), который при определенных условиях вступает в реакцию обмена с ионами того же знака, содержащимися в сточной воде.

Электрохимическая очистка реализуется окислением ве­ществ путем передачи электронов непосредственно на поверхности анода или через вещество-переносчика, а также в ре­зультате взаимодействия с сильными окислителями, образо­вавшимися в процессе электролиза.

Гиперфильтрация реализуется разделением растворов путем фильтрования их через мембраны, поры которых разме­ром около 1нм пропускают молекулы воды, задерживая гидра-тированные ионы солей или молекулы недиссоциированных соединений.

Эвапорация осуществляется обработкой паром сточной воды с содержанием летучих органических веществ, которые переходят в паровую фазу и вместе с паром удаляются из сточ­ной воды.

Выпаривание, испарение и кристаллизацию используют для очистки небольших объемов сточной воды с большим со­держанием летучих веществ.

160 Гл. 8. Экобиоэащитная техника и средства индивидуальной защиты

Биологическая очистка применяется для выделения тонкодисперсных и растворенных органических веществ. Она осно­вана на способности микроорганизмов использовать для пита­ния содержащиеся в сточных водах органические вещества (кислоты, спирты, белки, углеводы и т.д.). Процесс состоит из двух стадий, протекающих одновременно, но с различной скоростью: адсорбции из сточных вод тонкодисперсных и рас­творенных примесей органических веществ и разрушение ад­сорбированных веществ внутри клетки микроорганизмов при протекающих в них биохимических процессах (окислении или восстановлении). Биохимическую очистку осуществляют в природных и искусственных условиях.

В природных условиях сточные воды очищают на полях фильтрации, полях орошения и в биологических прудах.

Биологические фильтры широко используют для очистки и бытовых, и производственных сточных вод. В качестве фильтровального материала для загрузки биофильтров приме­няют шлак, щебень, керамзит, пластмассу, гравий. Сущест­вуют биофильтры с естественной подачей воздуха - для очистки сточных вод с суточным расходом не более 1000 куб. м и био­фильтры с принудительной подачей воздуха - для очистки производственных сточных вод больших расходов и сильно

концентрированных.

Для реализации указанных методов используются очист­ные сооружения, через которые должны пропускаться все сточные воды промышленных предприятий и городской кана­лизации.

Основанием для выдачи разрешений на сброс производст­венных сточных вод в систему канализации населенного пунк­та для действующих предприятий является паспорт водного хо­зяйства, представляющий один из разделов экологического паспорта предприятия.

Паспорт водного хозяйства разрабатывает предприятие по установленной форме и представляет его для согласования в водопроводно-канализационное управление, где уточняют:

Места выпусков в системы канализации бытовых сточных
вод населенных пунктов;

Нормы сброса и состав сбрасываемых сточных вод до и
после очистных сооружений на выпусках по среднему и
максимальному количеству загрязняющих веществ.


Разрешение на сброс производственных сточных вод может быть аннулировано в случае изменения условий канали-зования населенных пунктов или несоблюдения промышлен­ным предприятием условий, в том числе по расходу вод и массе загрязнений. Расчет допустимых концентраций загряз­няющих веществ в сточных водах учитывает их степень очист­ки на станции аэрации.

8.2. Средства индивидуальной защиты

Номенклатура средств индивидуальной защиты (СИЗ) включает обширный перечень средств, применяемых в произ­водственных условиях (СИЗповседневного использования), а также используемых в чрезвычайных ситуациях (СИЗ кратко­временного использования). В зависимости от назначения СИЗ включают: специальную одежду и обувь, изолирующие костю­мы, средства защиты органов дыхания, глаз, рук, головы, лица, органов слуха, предохранительные приспособления и защитные дерматологические средства.

Специальная одежда служит для предохранения тела рабо­тающих от неблагоприятного воздействия механических и хи­мических факторов производственной среды. Она должна на­дежно защищать человека от вредных воздействий, не нару­шать нормальной терморегуляции организма, обеспечивать свободу движений, удобство ношения и хорошо очищаться от загрязнений, не изменяя при этом своих свойств.

Специальная обувь должна защищать ноги работников от воздействия опасных и вредных производственных факторов. Спецобувь изготовляют из кожи и кожзаменителей, плотных хлопчатобумажных тканей с полихлорвиниловым покрытием, резины. В химических производствах, где применяют кисло­ты, щелочи и другие агрессивные среды, пользуются резино­вой обувью. Широко применяют также пластмассовые сапоги из смеси поливинилхлоридных смол и синтетических каучу-ков.

Для защиты стопы от повреждений, связанных с падени­ем на ноги отливок и поковок, обувь снабжают стальным нос­ком, выдерживающим удар до 20 кг. Находит применение и специальная виброзащитная обувь.

Средства защиты глаз и лица - это очки открытого и за­крытого типов, козырьковые очки, ручные и наголовные

162

Щитки, шлемы, защищающие глаза и органы дыхания. При механической обработке материалов применяют очки закрыто­го типа с безосколочными стеклами; при разливке металлов и сплавов, агрессивных жидкостей - очки закрытого типа, маски с экраном или светофильтром. Отраженный свет излу­чения требует применения очков закрытого типа или масок с защитным экраном и светофильтрами. Для защиты глаз от лу­чистой энергии используют очки со светофильтрами. Специ­альные очки с металлизированными стеклами рекомендуют для защиты глаз от электромагнитных излучений в диапазонах миллиметровых, сантиметровых, дециметровых и метровых

От металлических повреждений и излучения защищают специальные щитки и маски. Для защиты электросварщиков выпускаются щиток-маска, щиток наголовный или маска за­щитная с прозрачным экраном.

Защитные дерматологические средства служат для предуп­реждения заболеваний кожи при воздействии некоторых вред­ных производственных факторов. Они выпускаются в виде мазей или паст, которые предназначены для защиты:

1) от нефтепродуктов, растворителей различных углеводородов,
жиров, масел, лаков, красок и других органических веществ;

2) от воды, водных растворов кислот, щелочей, солей, охлаж­
дающих водомасляных эмульсий.

Средства защиты органов слуха используют в шумных про­изводствах, при обслуживании энергоустановок и т.п. К ним относятся беруши и наушники. Беруши при использовании втыкают в уши. Одноразовые беруши следует использовать только один раз, беруши и наушники многоразового исполь­зования требуют тщательного ухода, содержания в чистоте и своевременного выявления дефектов. Правильное и постоян­ное применение средств защиты слуха снижает шумовую на­грузку для берушей на 10-20, для наушников на 20-30 дБ.

Средства защиты органов дыхания и кожи предназначены для того, чтобы предохранить от вдыхания и попадания в орга­низм человека вредных веществ (пыли, пара, газа) во время проведения различных технологических процессов или спаса­тельных работ при химическом загрязнении атмосферы и мест­ности сильнодействующими ядовитыми веществами. При подборе средств индивидуальной защиты органов дыхания не-


8.2.Средства индивидуальной защиты

обходимо знать: вещества, с которыми приходится работать; концентрацию загрязняющих веществ; время, в течение кото­рого нужно будет работать; состояние этих веществ (газа, паров или аэрозоли); вероятность опасности кислородного го­лодания; физические нагрузки на человека в процессе работы. По принципу защитного действия средства индивидуаль­ной защиты органов дыхания и кожи делятся на фильтрующие и изолирующие. В фильтрующих противогазах воздух, посту­пающий для дыхания, очищается от вредных веществ. В изо­лирующих - дыхание осуществляется за счет запасов кислорода, находящегося в самом противогазе; ими пользуются в случае, когда невозможно использовать фильтрующие противогазы, например при недостатке кислорода в воздухе, а также когда концентрация вредных веществ очень высока или неизвестна. В фильтрующих средствах защита кожи обеспечивается обезвреживанием паров химически опасных веществ специаль­ной пропиткой, нанесенной на ткань, и герметичностью кон­струкции костюма; в изолирующих - использованием проре­зиненных тканей и полимерных материалов.

В настоящее время наибольшее распространение получили фильтрующие противогазы ГП-5 (ГП-5 М) и ГП-7 (ГП-7 В). Гражданские противогазы ГП-5, ГП-7 предназначены для за­щиты человека от попадания в органы дыхания, на глаза и на лицо радиоактивных, отравляющих, сильнодействующих ядо­витых веществ и бактериальных средств. Противогаз ГП-7 - одна из последних моделей. На сегодняшний день этот проти­вогаз является наиболее надежным средством защиты органов дыхания. В реальных условиях он обеспечивает высокоэф­фективную защиту от паров ОВ нервнопаралитического дей­ствия (типа зарин, зоман), общеядовитого действия (хлорциан, синильная кислота), радиоактивных веществ - до 6 часов, от капель ОВ кожно-нарывного действия (иприт) - до 2 часов при температуре от - 40 до +40° С.

У противогаза ГП-7 по сравнению с ГП-5 уменьшено со­противление фильтрующе-поглощающей коробки, что облег­чает дыхание, уменьшено давление лицевой части на голову, что позволяет увеличить время пребывания в противогазе. Благо­даря этому им могут пользоваться люди старше 60 лет, а также больные с легочными и сердечно-сосудистыми заболеваниями. Наличие у противогаза переговорного устройства (мембра­ны) обеспечивает четкое понимание передаваемой речи и зна-

164 Гл. 8. Экобиозащитная техникам средства индивидуальной защиты

Чительно облегчает пользование средствами связи (телефо­ном, радио).

Противогаз ГП-7В отличается от ГП-7 тем, что в нем ли­цевая часть имеет устройство для приема воды, позволяющее утолять жажду, не снимая противогаза.

Отличие противогаза ГП-7 ВМ от противогаза ГП-7 за­ключается в том, что его лицевая часть имеет очковый узел в виде трапециевидных изогнутых стекол, обеспечивающих воз­можность работы с оптическими приборами.

Облегченным средством защиты органов дыхания от вред­ных газов, паров, аэрозолей и пыли являются респираторы. Они делятся на два типа: первый - это респираторы, у кото­рых полумаска и фильтрующий элемент одновременно служат и лицевой частью; второй - очищает вдыхаемый воздух в фильтрующих патронах, присоединяемых к полумаске.

По назначению респираторы подразделяются на противо-пылевые, противогазовые и газопылезащитные. Противопы-левые предохраняют органы дыхания от аэрозолей различных видов, противогазовые - от вредных паров и газов, а газопы­лезащитные - от газов, паров и аэрозолей при одновремен­ном их присутствии в воздухе.

Средства защиты кожи предназначены для предохранения людей от воздействия СДЯВ, ОВ, радиоактивных веществ и бактериальных средств. Они изготавливаются в виде курток с капюшонами, полукомбинезонов и комбинезонов.

Для защиты от СДЯВ в зоне аварии используются в основ­ном средства защиты изолирующего типа. К ним относятся: комплект изолирующий химический КИХ-4 (КИХ-5); обще­войсковой защитный комплект; легкий защитный костюм Л-1. Комплект защитной фильтрующей одежды состоит из хлопчатобумажного комбинезона, пропитанного водным рас­твором специальной пасты, задерживающим пары отравляю­щих веществ (адсорбционного типа) или нейтрализующим их (хемосорбционного типа), а также мужского нательного белья, хлопчатобумажного подшлемника и двух пар портянок (одна из которых пропитана тем же составом, что и комбине­зон).

Медицинские средства индивидуальной защиты имеют важ­ное значение в системе мероприятий по защите населения от поражающих факторов техногенных катастроф, стихийных бедствий и инфекционных заболеваний. К ним относятся:


8.2.Средства"индивидуальной защиты

радиозащитные средства, антидоты, противобактериальные препараты, средства частичной обработки. Все они предна­значены для профилактики заболевания и оказания первой медицинской помощи населению. Важнейшие из них содер­жатся в индивидуальной аптечке (АИ-2), выдаваемой населе­нию с объявлением об опасности чрезвычайной ситуации. Она представляет собой пластмассовый футляр оранжевого цвета, в который вложены пеналы с лекарственными средст­вами и шприц-тюбик с антидотом. Препараты размещены следующим образом:

Гнездо 1 предназначено для шприца-тюбика с противобо­
левым средством, применяемым при переломах, обшир­
ных травмах и ожогах;

Гнездо 2 вмещает пенал красного цвета с 6 таблетками ТАРЕ-
НА - для профилактики поражений ФОВ (разовый прием -
2 таблетки, повторный прием - 1 таблетка через 6-8 часов);

Гнездо 3 содержит антибактериальное средство № 2 СУЛЬ-
ФАДИМЕТОКСИН (15 таблеток) для устранения желудоч­
ных расстройств, возникающих после облучения. В пер­
вые сутки принимается 7 таблеток, в последующие двое
суток - по 4 таблетки;

В гнезде 4 находится радиозащитное средство № 1 ЦИСТА-
МИН (два пенала по 6 таблеток). Применяется при угрозе
облучения: в один прием - 6 таблеток; при новой угрозе
облучения принимаются еще 6 таблеток, но не ранее чем
через 4-5 часов после первого приема;

Гнездо 5 содержит противобактериальное средство № 1
ТЕТРАЦЕКЛИН (два пенала по 5 таблеток). Применяется
при угрозе или происшедшем заражении, ранениях и ожо­
гах: вначале 5 таблеток, запивая водой, а через 6 часов -
еще 5 таблеток;

Гнездо 6 вмещает радиоактивное средство № 2 - 10 табле­
ток ЙОДИСТОГО КАЛИЯ, который принимается по одной
таблетке в течение 10 дней после выпадения радиоактив­
ных осадков;

В гнезде 7 содержится противорвотное средство ЭТАПЕРА-
ЗИН (5 таблеток). Применяется по 1 таблетке после облу­
чения или при появлении тошноты при ушибе головы.

Индивидуальный противохимический пакет (ИПП-8, ИПП-10) используется для санитарной обработки открытых участков


166 Гл. 8. Экобиозащитная техника и средства индивидуальной защиты

Кожи и прилегающих к ним участков одежды путем обеззара­живания попавших на них капельно-жидких или туманообраз-ных ОВ и бактериальных аэрозолей. Пакет содержит флакон с полидегазирующей жидкостью, способной обезвреживать ОВ, и 4 ватномарлевые салфетки, заключённые в герметичес­кий пакет. Эффективность санитарной обработки высока, если дегазирующий раствор применять сразу после попадания капель ОВ на кожные покровы:

Для обеззараживания тдивидуальньа запасов воды щяжонякп- ся таблетки ПАНТОЦИНА, содержащие хлорамин. Одна таб­летка рассчитана на обеззараживание 1 литра воды. Вода при­годна для питья через 45 мин после полного растворения в ней таблетки.


Чрезвычайные ситуации мирного и военного времени

9.1. Общие сведения и классификация чрезвычайных ситуаций

Стихийные бедствия, аварии и катастрофы - весьма час­тые явления в нашей стране. Каждый год в том или ином регионе происходят сильные разливы рек, прорывы дамб и плотин, землетрясения, бури и ураганы, лесные и торфяные пожары.

Каждому из этих явлений присущи свои особенности, ха­рактер поражений, объем и масштабы разрушений, величина бедствий и человеческих потерь. Каждое из них накладывает свой отпечаток на окружающую среду.

Знание причин возникновения и характера стихийных бедствий позволяет при заблаговременном принятии мер за­щиты и разумном поведении населения значительно снизить все виды потерь.

Своевременная информация дает возможность провести предупредительные работы, привести в готовность силы и средства, разъяснить людям правила поведения.

Все население должно быть готово к действиям в экстре­мальных ситуациях, к участию в работах по ликвидации сти­хийных бедствий, аварий и катастроф, уметь владеть способа­ми оказания первой медицинской помощи пострадавшим.

Что же представляют собой стихийные бедствия? Каковы их особенности? Каковы правила поведения и действия людей в чрезвычайных ситуациях?

"Чрезвычайная ситуация - это обстановка на определенной территории, сложившаяся в результате аварии, опасного при­родного явления, катастрофы, стихийного или иного бедствия, которые могут повлечь или повлекли за собой человеческие жер­твы, ущерб здоровью людей или окружающей природной среде, значительные материальные потери и нарушения условий жиз­недеятельности людей" (ст.1 Федерального закона РФ "О за-

168

Щите населения и территорий от чрезвычайных ситуаций при­родного и техногенного характера").

Источниками чрезвычайных ситуаций могут быть стихий­ные бедствия, аварии, широко распространенные инфекци­онные болезни людей, животных и растений, а также совре­менные средства поражения, в результате которых произошла или может возникнуть чрезвычайная ситуация.

В нормативных документах Единой государственной сис­темы предупреждения и ликвидации чрезвычайных ситуаций выделяют следующие группы ЧС:

I - природные;

II - биолого-социальные;

III - техногенные;

IV - экологические.

В соответствии с Постановлением Правительства РФ № 1094 от 13.09.1996 г. в зависимости от масштабов распространения и тяжести последствий все чрезвычайные ситуации подразде­ляются на локальные, местные, территориальные, регио­нальные, федеральные и трансграничные.

Локальная - это такая ЧС, в результате которой пострада­ло не более 10 человек, либо нарушены условия жизнедея­тельности не более 100 человек, либо материальный ущерб составляет не более 1тыс. минимальных размеров оплаты труда (МРОТ) на день возникновения чрезвычайной ситуации и зона ее не выходит за пределы территории объекта производ­ственного или социального назначения.

Местная - это ЧС, в результате которой пострадало свыше 10, но не более 50 человек; либо нарушены условия жизнедеятельности свыше 100, но не более 300 человек; либо материальный ущерб составляет свыше 1 тыс., но не более 5 тыс. МРОТ на день возникновения чрезвычайной ситуации и зона чрезвычайной ситуации не выходит за пределы населен­ного пункта, города, района.

Территориальная - это ЧС, в результате которой постра­дало свыше 50, но не более 500 человек; либо нарушены усло­вия жизнедеятельности свыше 300, но нее более 500 человек; либо материальный ущерб составляет свыше 5 тыс., но не более 0,5 млн МРОТ на день возникновения чрезвычайной си­туации и зона чрезвычайной ситуации не выходит за пределы субъекта Российской Федерации.


169

Региональная - это ЧС, в результате которой пострадало свыше 50, но не более 500 человек; либо нарушены условия жизнедеятельности свыше 500, но не более 1000 человек; либо материальный ущерб составляет свыше 0,5 млн, но не более 5 млн МРОТ на день возникновения чрезвычайной ситуации и зона чрезвычайной ситуации охватывает территорию двух субъектов Российской Федерации.

Федеральная - это ЧС, в результате которой пострадало свыше 500 человек, либо нарушены условия жизнедеятель­ности свыше 1000 человек, либо материальный ущерб состав­ляет свыше 5 млн МРОТ на день возникновения чрезвычайной ситуации и зона чрезвычайной ситуации выходит за пределы более двух субъектов Российской Федерации.

Трансграничная - это ЧС, поражающие факторы которой выходят за пределы Российской Федерации, либо чрезвычай­ная ситуация произошла за рубежом, но затрагивает террито­рию Российской Федерации.

В средствах массовой информации одни и те же события, связанные с чрезвычайными ситуациями, называют авариями или катастрофами.

В чем состоит различие между ними? Авария - это повреждение машины, станка, установки, поточной линии, системы энергоснабжения, оборудования, транспортного средства, здания, сооружения. Эти происше­ствия не столь значительны и без человеческих жертв.

Катастрофа - это событие с трагическими последствия­ми, например крупная авария с гибелью людей и значитель­ным материальным ущербом.

Стихийные бедствия - это опасные явления или процессы геофизического, геологического, гидрологического, атмо­сферного и другого происхождения, масштабы, которых вы­зывают катастрофические ситуации, характеризующиеся вне­запным нарушением жизнедеятельности населения, разруше­нием и уничтожением материальных ценностей, поражением и гибелью людей.

Стихийные бедствия как явления часто приводят к авари­ям и катастрофам в промышленности, на транспорте, в ком­мунально-энергетическом хозяйстве и других сферах деятель­ности человека.

Экологическая катастрофа - стихийное бедствие, круп­ная производственная или транспортная авария (катастрофа),

170 Гл. 9. Чрезвычайные ситуации мирного и военного времени

Которые привели к чрезвычайно неблагоприятным изменени­ям в среде обитания и, как правило, к массовой гибели живых организмов и к значительному экономическому ущербу.

/. Чрезвычайные ситуации природного характера. Исходя из причин (условий) возникновения их делят на следующие группы: геологические, метеорологические, гидрологичес­кие, природные пожары.

1. Стихийные бедствия геологического характера подразде­ляются на бедствия, вызванные землетрясениями, изверже­ниями вулканов, оползнями, селями, снежными лавинами, обвалами, просадками земной поверхности в результате карс­товых явлений.

Землетрясения - это подземные удары (толчки) и колеба­ния поверхности земли, вызванные естественными процесса­ми, происходящими в земной коре. Размеры очага землетря­сения обычно колеблются в пределах от нескольких десятков метров до сотен километров. При этом часто нарушается це­лостность грунта, разрушаются здания и сооружения, выходят из строя водопровод, канализация, линии связи, электро- и газоснабжения, имеются человеческие жертвы. Это одно из наиболее страшных стихийных бедствий. По данным ЮНЕСКО, землетрясениям принадлежит первое место по причиняемому экономическому ущербу и числу человеческих жертв.

Возникают землетрясения неожиданно, и, хотя продол­жительность главного толчка не превышает нескольких се­кунд, его последствия бывают трагическими. На территории России примерно 28% районов сейсмоопасны. Районы воз­можных 9-балльных землетрясений находятся в Прибайкалье, на Камчатке и Курильских островах, 8-балльных - в Южной Сибири и на Северном Кавказе.

Вулканическая деятельность возникает в результате посто­янных активных процессов, происходящих в глубинах Земли, внутренняя часть которой постоянно находится в разогретом состоянии. На глубине от 10 до 30 км накапливаются расплав­ленные горные породы, или магма. При тектонических про­цессах в земной коре образуются трещины и магма устремляет­ся к поверхности. Этот процесс сопровождается выделением паров воды и газов, которые создают огромное давление, уст­раняя преграды на своем пути. При выходе на поверхность Земли часть магмы превращается в шлак, а другая изливается в виде лавы. Из выброшенных в атмосферу паров и газов на


9.1. Общие сведения и классификация чрезвычайных ситуаций

землю оседают частицы вулканической породы, именуемые тефрой.

Вулканические шлаки, пемза, пепел, горные породы, нагромождаясь, образуют гору преимущественно конусооб­разной формы, которая и называется вулканом. В верхней части вулкана находится кратер, имеющий форму воронки, связанной каналом с источником магмы.

По степени активности вулканы классифицируются на действующие, дремлющие и потухшие. К действующим отно­сят те, которые извергались в историческое время, в отличие от потухших, которые, не извергались. Дремлющие вулканы проявляют себя периодически, но до извержения дело не до­ходит.

В России, близ Петропавловска-Камчатского, находится действующий вулкан Авача. Около него располагаются потухшие вулканы - Корякская и Козельская сопки. На Курильских островах насчитывается 39 действующих вулканов, на Камчат­ке - 26. К востоку от Средиземного моря широкой полосой разбросаны потухшие вулканы Малой Азии и Кавказского хребта - Арарат, Казбек и Эльбрус.

Оползни - это скользящее смещение земляных масс под действием собственного веса. Чаще всего происходят по бере­гам рек и водоемов, на горных склонах. Основная причина их возникновения - избыточное насыщение подземными водами глинистых пород. Сходят оползни в любое время года, но большей частью в весенне-летний период.

Оползни наносят существенный ущерб народному хозяй­ству, они угрожают движению поездов, автомобильному транспорту, жилым домам и другим постройкам. При оползнях интенсивно идет процесс выбывания земель из сельскохозяй­ственного оборота. Нередко они приводят и к человеческим жертвам.

Сель (селевой поток, от араб. сайль "бурный поток") - бурный грязевый или грязекаменный поток, состоящий из смеси воды и обломков горных пород, внезапно возникающий в бассейнах небольших горных рек. Причина его возникнове­ния - интенсивные и продолжительные ливни, быстрое таяние снега или ледников, прорыв водоемов, реже -землетрясения, извержения вулканов.

В отличие от обычных потоков сель движется, как прави­ло, отдельными волнами, а не непрерывным потоком. Одно-


Гл. 9. Чрезвычайные ситуации мирного и военного времени

.1. Общие сведения и классификация чрезвычайных ситуаций 173

Временно на поверхность выносится огромное количество вяз­кой магмы. Крутой передний фронт селевой волны высотой от 5 до 15 м образует "голову" селя. Максимальная высота вала водогрязевого потока иногда достигает 25 м. Сель переходит через препятствия, которые встречаются на его лути, продол­жая наращивать свою энергию.

Все это продолжается очень недолго - 1-3 часа: Время от начала возникновения селя в горах и до момента выхода его в равнинную часть исчисляется 20-30 минутами. Но, обладая большой массой и высокой скоростью передвижения (до 15 км/ч), сели разрушают здания, дорога, гидротехнические и другие сооружения, выводят из строя линии связи, электро­передачи, приводят к гибели людей и животных.

В России до 20% территории находится в селеопасньгх зонах. Особенно активно селевые потоки формируются в Ка­бардино-Балкарии, Северной Осетии, Дагестане, в районе Новороссийска, Саяно-Байкальской области, в зоне трассы Байкало-Амурской магистрали, на Камчатке, в пределах Ста­нового и Верхоянского хребтов. Происходят они также в неко­торых районах Приморья, Кольского полуострова и на Урале.

Снежные лавины - низвергающиеся со склонов гор под воздействием силы тяжести снежные массы.

Снег, накапливающийся на склонах гор, под влиянием тяжести и ослабления структурных связей внутри снежной толщи соскальзывает или осыпается со склона. Начав свое движение, он быстро набирает скорость, захватывая по пути все новые снежные массы, камни и другие предметы. Движе­ние продолжается, пока лавина не достигнет более пологих участков или дна долины, где она тормозится и останавливается.

Снежные лавины очень часто угрожают населенным пунк­там, спортивным и санаторно-курортным комплексам, же­лезным и автомобильным дорогам, линиям электропередачи, объектам горнодобывающей промышленности и другим хозяй­ственным сооружениям. Поражающая способность лавин раз­лична. Так, лавина уже в 10 м 3 представляет опасность для человека и легкой техники, крупные - в состоянии разрушить капитальные инженерные сооружения, образовать трудно-или непреодолимые завалы на транспортных трассах.

В России чаще всего такие стихийные бедствия случаются на Кольском полуострове, Урале, Северном Кавказе, на юге Западной и Восточной Сибири, Дальнем Востоке.


В подавляющем большинстве в горных районах лавины сходят ежегодно, а иногда и по нескольку раз в год.

2. Стихийные бедствия метеорологического характера под­
разделяются на бедствия, вызываемые:

Ветром, в том числе бурей, ураганом, смерчем (при ско­
рости 25 м/с и более, для арктических и дальневосточных морей - 30 м/с и более);

Сильным дождем (при количестве осадков 50 мм и более в течение 12 ч и менее, а в горных, селевых и ливнеопасных районах - 30 мм и более за 12 часов и менее);

Крупным градом (при диаметре градин 20 мм и более);

Сильным снегопадом (при количестве осадков 20 мм и
более за 12 ч и менее);

Сильными метелями (скорость ветра 15 м/с и более);

Пыльными бурями;

Заморозками (при понижении температуры воздуха в веге­
тационной период на поверхности почвы ниже 0°С);

Сильными морозами или сильной жарой.

3. Стихийные бедствия гидрологического характера подраз­
деляются на бедствия, вызываемые:

Высоким уровнем воды - наводнения, при которых про­
исходит затопление пониженных частей городов и других
населенных пунктов, посевов сельскохозяйственных культур,
повреждение промышленных и транспортных объектов;

Низким уровнем воды, когда нарушается судоходство, во­
доснабжение городов и народнохозяйственных объектов,
оросительных систем;

Ранним ледоставом и появлением льда на судоходных водо­
емах;

Цунами - сильные волнения на морях и океанах.

Наводнения - это затопление водой прилегающей к реке, озеру или водохранилищу местности, которое причиняет ма­териальный ущерб, наносит урон здоровью людей или приво­дит к их гибели. Если затопление не сопровождается ущербом, - это есть разлив реки, озера, водохранилища.

Наводнения в большей или меньшей степени периодичес­ки наблюдаются на большинстве рек России. По повторяе­мости, площади распространения и суммарному среднему го­довому материальному ущербу они занимают первое место в


Гл. 9. Чрезвычайные ситуации мирного и военного времени

9.1. Общие сведения и классификация чрезвычайных ситуаций 175

Ряду стихийных бедствий, по количеству человеческих жертв и материальному ущербу - второе место после землетрясений. Ни в настоящем, ни в ближайшем будущем полностью предот­вратить их не представляется возможным. Наводнения можно только ослабить или локализовать.

Хотя по метеорологическим условиям все регионы России различны, наводнения происходят практически ежегодно то в одном, то в другом районе. Ущерб исчисляется огромными цифрами. Площадь, которая может быть подвергнута затоп­лению паводковыми водами, составляет около 500 тыс. км 2 , однако ежегодно реально затоплятся от 36 до 56 тыс. км 2 .

Наиболее велико негативное воздействие наводнений в бассейнах рек Амура, Уссури, Имана, Зеи, Буреи, рек Сибири, впадающих в северные моря, и рек Северного Кавказа.

В зависимости от причин возникновения наводнения под­разделяются на четыре группы, а именно наводнения:

а) связанные с максимальным стоком от весеннего таяния снега;
отличаются значительным и довольно длительным подъ­
емом уровня воды в реке и называются половодьем;

б) формируемые интенсивными дождями; характеризуются ин­
тенсивными, сравнительно кратковременными подъемами
уровня воды и называются паводками;

в) вызванные в основном большим сопротивлением, которое
водный поток встречает в реке; происходят большей частью
в начале и в конце зимы при заторах и зажорах льда;

г) создаваемые ветровыми нагонами воды на крупных озерах
и водохранилищах, а также в морских устьях рек.

В пределах России в основном преобладают наводнения первых двух групп.

По размерам и масштабам убытков наводнения также де­лятся на четыре группы:

а) низкие (малые); наблюдаются, как правило, на равнин­
ных реках и имеют повторяемость примерно один раз в
5-10 лет. Затопляется при этом менее 10% сельхозугодий,
расположенных в низинных местах. Наносят незначительный
материальный ущерб и почти не нарушают ритма жизни на­
селения;

б) высокие; сопровождаются значительным затоплением,
иногда приходится эвакуировать население; охватывают срав­
нительно большие участки местности, существенно наруща-


ют хозяйственную деятельность и установленный ритм жизни. Наносят значительный материальный и моральный ущерб. Происходят один раз в 20-25 лет;

в) выдающиеся; охватывают целые речные бассейны. Пара­
лизуют хозяйственную деятельность, наносят большой ма­
териальный и моральный ущерб. Очень часто приходится
прибегать к массовой эвакуации населения и материаль­
ных ценностей. Повторяются примерно один раз в 50-
100 лет;

г) катастрофические; вызывают затопления громадных тер­
риторий в пределах одной или нескольких речных систем.
Хозяйственная деятельность полностью парализуется. Резко
изменяется жизненный уклад населения. Материальный
ущерб огромен. Наблюдаются случаи гибели людей. Про­
исходят один раз в 100-200 лет и реже.

К основным характеристикам последствий наводнений от­носятся:

Численность населения, оказавшегося в зоне, подвержен­
ной наводнению;

Количество населенных пунктов, попавших в зону навод­
нения;

Количество предприятий, протяженность автомобильных
и железных дорог, линий электропередачи, связи и ком­
муникаций, оказавшихся в зоне затопления;

Число погибших животных, разрушенных мостов и тоннелей.

Различают прямой и косвенный ущерб от наводнений.

Прямой - это, например, повреждение и разрушение жилых и производственных зданий, железных и автомобиль­ных дорог, линий электропередачи и связи, гибель скота и урожая, уничтожение и порча сырья, топлива, продуктов пи­тания, кормов, затраты на временную эвакуацию населения и материальных средств.

К косвенному ущербу обычно относят: затраты на приоб­ретение и доставку в пострадавшие районы продуктов питания, строительных материалов и кормов для скота, сокращение выработки продукции, ухудшение условий жизни населения.

Прямой и косвенный ущерб находятся большей частью в соотношении 70% : 30%.

Цунами - это длинные волны, возникающие в результате подводных землетрясений, а также вулканических изверже-

176Гл. 9. Чрезвычайные ситуации мирного и военного времени
9.1. Общие сведения и классификация чрезвычайных ситуаций177

Ний или оползней на морском дне. Их источник находится на дне океана. В 90% случаев цунами возникают из-за подвод­ных землетрясений.

Образовавшись в каком-либо месте, цунами может пройти несколько тысяч километров, почти не уменьшаясь. Это свя­зано с длинным периодам волн (от 150 до 300 км). В откры­том море корабли эти волны могут и не обнаружить, хотя те движутся с большой скоростью (от 100 до 1000 км/ч). Высота волн небольшая, однако, достигнув мелководья, волна резко замедляется, ее фронт вздымается и обрушивается со страш­ной силой на сушу. Высота крупных волн в таком случае у побережья достигает 5-20 м, а иногда доходит до 40 м.

Волна цунами может быть не единственной. Очень часто это серия волн с интервалами около часа. Наиболее высокую из них называют главной.

4. В понятие природных пожаров входят: лесные пожары, пожары степных и хлебных массивов, торфяные и подземные пожары горючих ископаемых.

Лесные пожары - это неконтролируемые горения расти­тельности, стихийно распространяющиеся по лесной террито­рии, которые при сухой погоде и ветре охватывают значитель­ные пространства.

В 90-97 случаях из 100 виновниками возникновения бед­ствия оказываются люди, не проявляющие должной осторож­ности при пользовании огнем в местах работы и отдыха. Доля пожаров от молний составляет не более 2% от общего их коли­чества.

В зависимости от характера возгорания и состава леса по­жары подразделяются на низовые, верховые, почвенные. Почти все они в начале своего развития носят характер низо­вых и, если создаются определенные условия, переходят в верховые или почвенные.

При низовом пожаре, а их бывает до 90 % от общего коли­чества, огонь распространяется только по почвенному покро­ву, охватывая нижние части деревьев, траву и выступающие корни.

При верховом беглом пожаре, который начинается только при сильном ветре, огонь продвигается обычно по кронам де­ревьев "скачками". Ветер разносит искры, горящие ветки и хвою, которые создают новые очаги за несколько десятков, а то и сотен метров. Пламя движется со скоростью 15-20 км/ч.


Следствием низовых или верховых пожаров являются под­земные пожары. После сгорания верхнего напочвенного по­крова огонь заглубляется в торфянистый горизонт. Подземные пожары принято называть торфяными.

Крупные лесные пожары бушуют в период чрезвычайной пожарной опасности в лесу, особенно при длительной и силь­ной засухе. Их развитию способствуют ветреная погода и за­хламленность лесов.

Средняя продолжительность крупных лесных пожаров со­ставляет от 10 до 15 суток, выгоревшая площадь в среднем составляет 40-500 га при периметре от 8 до 16 км.

Районы, в которых свирепствуют лесные пожары, обычно объявляются "зоной бедствия".

Стихийные бедствия нередко вызывают массовые заболе­вания людей, животных, растений и приводят к биолого-со­циальным ЧС.

//. Биолого-социалъные чрезвычайные ситуации - это состоя­ние, при котором в результате возникновения источника био­лого-социальной ЧС на определенной территории нарушаются нормальные условия жизни и деятельности людей, существо­вания сельскохозяйственных животных и произростания рас­тений, возникает угроза жизни и здоровью людей, широкого распространения инфекционных болезней, потерь сельскохо­зяйственных животных и растений.

Инфекционные болезни людей - это заболевания, вызывае­мые болезнетворными микроорганизмами и передающиеся от зараженного человека или животного к здоровому.

Эпидемическим процессом называется явление возникнове­ния и распространения инфекционных заболеваний среди людей, представляющее непрерывную цепь последовательно возникающих однородных заболеваний. Для характеристики интенсивности распространения заболевания используются такие понятия, как эпидемическая вспышка, эпидемия и пан­демия.

Эпидемическая вспышка - это ограниченный во времени и по территории резкий подъем заболеваемости, связанный с одномоментным заражением людей.

Эпидемия - широкое распространение инфекционной бо­лезни, значительно превышающее обычно регистрируемый на данной территории уровень заболеваемости.


Гл. 9. Чрезвычайные ситуации мирного и военного времени

9.1. Общие сведения и классификация чрезвычайных ситуаций 179

Пандемия - необычно широкое распространение заболе­ваемости как по уровню, так и по масштабам распространения с охватом ряда стран, целых континентов и даже всего земного шара.

К особо опасным инфекционным заболеваниям людей от­носятся: чума, холера, желтая лихорадка, СПИД (синдром приобретенного иммунного дефицита), дифтерия, грипп, ди­зентерия, гепатит, туберкулез и др.

Инфекционные болезни животных - группа болезней, имеющая такие общие признаки, как наличие специфическо­го возбудителя, цикличность развития, способность переда­ваться от зараженного животного к здоровому и принимать эпизоотическое распространение.

По широте распространения эпизоотический процесс ха­рактеризуется тремя формами: спорадической заболеваемостью, эпизоотией, панзоотией.

Спорадия - это единичные или немногие случаи проявле­ния инфекционной болезни, обычно не связанные между собой единым источником возбудителя инфекций, самая низ­кая степень интенсивности эпизоотического процесса.

Эпизоотия - средняя степень интенсивности (напряжен­ности) эпизоотического процесса. Характеризуется широким распространением инфекционных болезней в хозяйстве, райо­не, области, стране. Ей свойственны массовость, общность источника возбудителя инфекции, одновременность пораже­ния, периодичность и сезонность.

Панзоотия ~ высшая степень развития эпизоотии. Харак­теризуется необычайно широким распространением инфекци­онной болезни, охватывающем одно государство, несколько стран, материк. К инфекционным болезням животных, имею­щим тенденцию к панзоотиям, относятся ящур, чума крупного рогатого скота, свиней и птиц, бруцеллез, бешенство крупно­го рогатого скота и др.

Болезнь растений - это нарушение нормального обмена веществ, клеток органов и целого растения под влиянием фи-топатогена или неблагоприятных условий среды, приводящее к снижению продуктивности растений или к полной их гибели.

Фитопатоген - возбудитель болезни растений, выделяет биологически активные вещества, губительно действующие на обмен веществ, поражая корневую систему и нарушая поступ­ление питательных веществ.


Для оценки масштабов заболеваний растений применяют такие понятия, как "эпифитотия" и "панфитотия".

Эпифитотия - распространение инфекционных болезней на значительные территории в течение определенного времени.

Панфитотия - массовые заболевания, охватывающие не­сколько стран или континентов.

III. Чрезвычайные ситуации техногенного характера весьма разнообразны как по причинам их возникновения, так и по масштабам. По характеру явлений они подразделяются на 6 основных групп - это аварии на:

1) химически опасных объектах (ХОО);

2) радиационно опасных объектах (РОО);

3) пожаро- и взрывоопасных объектах;

4) гидродинамически опасных объектах;

5) транспорте (железнодорожном, автомобильном, воздуш­
ном, водном, метро);

6) коммунально-энергетических сетях.

1. Химическая авария - это выбросы сильнодействующих
ядовитых веществ, которые могут произойти при повреждени­
ях и разрушениях емкостей при хранении, транспортировке
или переработке этих веществ. Кроме того, некоторые неток­
сичные вещества в определенных условиях (взрыв, пожар) в
результате химической реакции могут образовать СДЯВ. В
случае аварии происходит заражение не только приземного
слоя атмосферы, но и водных источников, продуктов пита­
ния, почвы.

Главный поражающий фактор при авариях на ХОО - хи­мическое заражение приземного слоя атмосферы, приводящее к поражению людей, находящихся в зоне действия СДЯВ. Его масштабы характеризуются размерами зон заражения. Разли­чаются следующие зоны: смертельных токсодоз, выводящих из строя и пороговых токсодоз.

2. Радиационная авария - происшествие, приводящее к
выходу (выбросу) радиоактивных продуктов и ионизирующих
излучений за предусмотренные проектом пределы (границы) в
количествах, превышающих установленные нормы безопас­
ности.

Радиационное воздействие на персонал и население в зоне радиоактивного загрязнения характеризуется величинами доз внешнего и внутреннего облучения людей. Под внешним по-


Гл. 9. Чрезвычайные ситуации мирного и военного времени

9.1. Общие сведения и классификация чрезвычайных ситуаций 181

Нимается прямое облучение человека от источников ионизиру­ющего излучения, расположенного вне его тела, главным об­разом от источников у-излучения и нейтронов. Внутреннее облучение происходит за счет ионизирующего излучения от источников, находящихся внутри человека. Эти источники образуются в критических (наиболее чувствительных) органах и тканях. Внутреннее облучение происходит за счет источни­ков а-, р- и у-излучения.

3. Аварии на пожаро- и взрывоопасных объектах, связанные
с сильными взрывами и пожарами, могут привести к тяжелым
социальным и экономическим последствиям. Вызываются
они в основном взрывами емкостей и трубопроводов с легко­
воспламеняющимися и взрывоопасными жидкостями и газа­
ми, коротким замыканием электропроводки, взрывами и воз­
горанием некоторых веществ и материалов. Пожары при про­
мышленных авариях вызывают разрушения сооружений из-за
сгорания или деформации их элементов от высоких температур.

4. При авариях на гидродинамически опасных объектах, к
которым относятся гидротехнические сооружения напорного
типа, опасно разрушение плотин. При прорыве плотин обра­
зуется волна прорыва, разрушительное действие которой за­
ключается главным образом в движении больших масс воды с
высокой скоростью и таранного действия всего того, что пере­
мещается вместе с водой (камни, доски, бревна, различные
конструкции).

Высота и скорость волны прорыва зависят от гидрологи­ческих и топографических условий реки. Например, для рав­нинных районов скорость волны прорыва может достигать от 3 до 25 км/ч, а в горных и предгорных местах - 100 км/ч. Лесистые участки замедляют скорость и уменьшают высоту волны.

При прорыве плотин значительные участки местности через 15-30 минут обычно оказываются затопленными слоем воды толщиной от 0,5 до 10 м и более. Время, в течение кото­рого территория может находиться под водой, колеблется от нескольких часов до нескольких суток.

5. Аварии на транспорте и коммунально-энергетических
сетях
довольно частые явления в нашей жизни, и, к сожале­
нию, их число из года в год увеличивается. На сегодня любой
вид транспорта представляет потенциальную опасность.

На железнодорожном транспорте чаще всего происходит сход подвижного состава с рельсов, столкновения, наезды на


препятствия на переездах, пожары и взрывы непосредственно в вагонах. Нельзя исключать и размывы железнодорожных путей, обвалы, оползни. При перевозке опасных грузов, таких, как газы, легковоспламеняющиеся, взрывоопасные, ядовитые и радиоактивные вещества, могут происходить взрывы и пожары.

Причинами аварий на железнодорожном транспорте явля­ются изношенность путевого и вагонного хозяйства, неис­правности средств сигнализации, централизации и блокиров­ки, ошибки диспетчеров, невнимательность и халатность ма­шинистов.

Одна из основных проблем, связанных с автомобильным транспортом, - обеспечение безопасности движения. Около 75% всех дорожно-транспортных происшествий происходит из-за нарушения водителями правил дорожного движения, причем треть ДТП является следствием плохой подготовки води­телей. Они либо вообще не имеют права на управление транс­портным средством соответствующей категории, либо, более того, водительские удостоверения ими покупаются. Наиболее опасным видом нарушений по-прежнему остается превышение скорости, выезд на полосу встречного движения, управление автомобилем в нетрезвом состоянии.

На воздушном транспорте, несмотря на принимаемые меры, количество аварий и катастроф не уменьшается. К тя­желым последствиям приводят разрушения отдельных кон­струкций самолета, отказ двигателя, нарушение работы систем управления, электропитания, связи, пилотирования, недо­статок топлива или его низкое качество, перебои в жизнеобес­печении экипажа и пассажиров.

На водном транспорте большинство крупных аварий и ка­тастроф происходят под воздействием ураганов, штормов, ту­манов, льдов, а также по вине людей -капитанов, лоцманов и членов экипажа. Половина происшествий на реках и морях - следствие неумелой эксплуатации транспорта, неправильное расположение грузов, плохое их крепление и т.д. Все это ведет к столкновениям и опрокидываниям судов, посадке их на мель, взрывам и пожарам на борту.

6. Аварии на коммунально-энергетических сетях в нашей жизни стали обыденным явлением. В 2002-2003 гг. зимой замерзали целые города. Из-за старения оборудования, кор­розии и ветхости труб, деформации почвы разрывы на водо­проводных, канализационных сетях и трубопроводах оказа-

Гл. 9. Чрезвычайные ситуации мирного и военного времени

лись настоящим бичом для работников жилищно-коммуналь­ных служб.

При планировании мероприятий по борьбе с авариями надо учитывать, что в своем развитии они проходят пять ха­рактерных этапов:

Накопление отклонений от нормального процесса;

Инициирование аварии;

Развитие аварии, во время которой оказывается воздейст­
вие на людей, природную среду и объекты народного хо­
зяйства;

Проведение спасательных и других неотложных работ,

Восстановление жизнедеятельности после ликвидации пос­
ледствий аварии.

В связи с тем что количество аварий имеет тенденцию к увеличению из года в год, аварийно-спасательные службы, команды спасателей, формирования МЧС и ГО должны нахо­диться в готовности к выполнению задач по ликвидации не­предвиденных ситуаций.

ГУ. Чрезвычайные ситуации экологического характера весьма разнообразны и практически охватывают все стороны жизни и деятельности человека. Это связано с широким спектром ис­точников данной ЧС.

По характеру явлений экологические ЧС подразделяются на четыре основные группы, которые характеризуются изменением:

Состояния суши (деградация почв, эрозия, опустынивание);

Свойств воздушной среды (потепление климата, недостаток
кислорода, вредные вещества, кислотные дожди, шумы, на­
рушение озонового слоя);

Состояния гидросферы (истощение и загрязнение рек,
морей и океанов);

Состояния биосферы (зоны Земли - включая верхнюю ли­
тосферу и нижнюю часть атмосферы).


Похожая информация.


Вверх