11 схема работы атомно. История и типы атомных электростанций. Как устроен реактор

А́ТОМНАЯ ЭЛЕКТРОСТА́НЦИЯ (АЭС), элек­тро­стан­ция, на ко­то­рой для по­лу­че­ния элек­тро­энер­гии ис­поль­зу­ет­ся те­п­ло­та, вы­де­ляю­щая­ся в ядер­ном ре­ак­то­ре в ре­зуль­та­те кон­тро­ли­руе­мой цеп­ной ре­ак­ции де­ле­ния ядер тя­жё­лых эле­мен­тов (в осн. $\ce{^{233}U, ^{235}U, ^{239}Pu}$ ). Те­п­ло­та, об­ра­зую­щая­ся в ак­тив­ной зо­не ядер­но­го ре­ак­то­ра, пе­ре­да­ёт­ся (не­по­сред­ст­вен­но ли­бо че­рез про­ме­жу­точ­ный те­п­ло­но­си­тель ) ра­бо­че­му те­лу (пре­им. во­дя­но­му па­ру), ко­то­рое при­во­дит в дей­ст­вие па­ро­вые тур­би­ны с тур­бо­ге­не­ра­то­ра­ми.

АЭC в принципе является аналогом обычной тепловой электростанции (ТЭС), в которой вместо топки парового котла используется ядерный реактор. Однако при сходстве принципиальных термодинамических схем ядерных и тепловых энергоустановок между ними есть и существенные различия. Основными из них являются экологические и экономические преимущества АЭС перед ТЭС: АЭС не нуждаются в кислороде для сжигания топлива; они практически не загрязняют окружающую среду сернистыми и др. газами; ядерное топливо имеет значительно более высокую теплотворную способность (при делении 1г изотопов U или Pu высвобождается 22 500 кВт∙ч, что эквивалентно энергии, содержащейся в 3000 кг каменного угля), что резко сокращает его объёмы и расходы на транспортировку и обращение; мировые энергетические ресурсы ядерного топлива существенно превышают природные запасы углеводородного топлива. Кроме того, применение в качестве источника энергии ядерных реакторов (любого типа) требует изменения тепловых схем, принятых на обычных ТЭС, и введения в структуру АЭС новых элементов, напр. биологич. защиты (см. Радиационная безопасность ), системы перегрузки отработанного топлива, бассейна выдержки топлива и др. Передача тепловой энергии от ядерного реактора к паровым турбинам осуществляется посредством теплоносителя, циркулирующего по герметичным трубопроводам, в сочетании с циркуляционными насосами, образующими т. н. реакторный контур или петлю. В качестве теплоносителей применяют обычную и тяжёлую воду, водяной пар, жидкие металлы, органические жидкости, некоторые газы (например, гелий, углекислый газ). Контуры, по которым циркулирует теплоноситель, всегда замкнуты во избежание утечки радиоактивности, их число определяется в основном типом ядерного реактора, а также свойствами рабочего тела и теплоносителя.

На АЭС с одноконтурной схемой (рис., а ) теплоноситель является также и рабочим телом, весь контур радиоактивен и потому окружён биологической защитой. При использовании в качестве теплоносителя инертного газа, например гелия, который не активируется в нейтронном поле активной зоны, биологическая защита необходима только вокруг ядерного реактора, поскольку теплоноситель не радиоактивен. Теплоноситель – рабочее тело, нагреваясь в активной зоне реактора, затем поступает в турбину, где его тепловая энергия преобразуется в механическую и далее в электрогенераторе – в электрическую. Наиболее распространены одноконтурные АЭС с ядерными реакторами, в которых теплоносителем и замедлителем нейтронов служит вода. Рабочее тело образуется непосредственно в активной зоне при нагревании теплоносителя до кипения. Такие реакторы называют кипящими, в мировой ядерной энергетике они обозначаются как BWR (Boiling Water Reactor). В России получили распространение кипящие реакторы с водяным теплоносителем и графитовым замедлителем – РБМК (реактор большой мощности канальный). Перспективным считается использование на АЭС высокотемпературных газоохлаждаемых реакторов (с гелиевым теплоносителем) – ВТГР (HTGR). Кпд одноконтурных АЭС, работающих в закрытом газотурбинном цикле, может превышать 45–50%.

При двухконтурной схеме (рис., б ) нагретый в активной зоне теплоноситель первого контура передаёт в парогенераторе (теплообменнике ) тепловую энергию рабочему телу во втором контуре, после чего циркуляционным насосом возвращается в активную зону. Первичным теплоносителем может быть вода, жидкий металл или газ, а рабочим телом вода, превращающаяся в водяной пар в парогенераторе. Первый контур радиоактивен и окружается биологической защитой (кроме тех случаев, когда в качестве теплоносителя используется инертный газ). Второй контур обычно радиационно безопасен, поскольку рабочее тело и теплоноситель первого контура не соприкасаются. Наибольшее распространение получили двухконтурные АЭС с реакторами, в которых первичным теплоносителем и замедлителем служит вода, а рабочим телом – водяной пар. Этот тип реакторов обозначают как ВВЭР – водо-водяной энергетич. реактор (PWR – Power Water Reactor). Кпд АЭС с ВВЭР достигает 40%. По термодинамической эффективности такие АЭС уступают одноконтурным АЭС с ВТГР, если температура газового теплоносителя на выходе из активной зоны превышает 700 °С.

Трёхконтурные тепловые схемы (рис., в ) применяют лишь в тех случаях, когда необходимо полностью исключить контакт теплоносителя первого (радиоактивного) контура с рабочим телом; например, при охлаждении активной зоны жидким натрием его контакт с рабочим телом (водяным паром) может привести к крупной аварии. Жидкий натрий как теплоноситель применяют только в ядерных реакторах на быстрых нейтронах (FBR – Fast Breeder Reactor). Особенность АЭС с реактором на быстрых нейтронах состоит в том, что одновременно с выработкой электрической и тепловой энергии они воспроизводят делящиеся изотопы, пригодные для использования в тепловых ядерных реакторах (см. Реактор-размножитель ).

Турбины АЭС обычно работают на насыщенном или слабоперегретом паре. При использовании турбин, работающих на перегретом паре, насыщенный пар для повышения температуры и давления пропускают через активную зону реактора (по особым каналам) либо через специальный теплообменник – пароперегреватель, работающий на углеводородном топливе. Термодинамическая эффективность цикла АЭС тем выше, чем выше параметры теплоносителя, рабочего тела, которые определяются технологическими возможностями и свойствами конструкционных материалов, применяемых в контурах охлаждения АЭС.

На АЭС боль­шое вни­ма­ние уде­ля­ют очи­ст­ке те­п­ло­но­си­те­ля, по­сколь­ку имею­щие­ся в нём ес­тественные при­ме­си, а так­же про­дук­ты кор­ро­зии, на­ка­п­ли­ваю­щие­ся в про­цес­се экс­плуа­та­ции обо­ру­до­ва­ния и тру­бо­про­во­дов, яв­ля­ют­ся ис­точ­ни­ка­ми ра­дио­ак­тив­но­сти. Сте­пень чис­то­ты те­п­ло­но­си­те­ля во мно­гом оп­ре­де­ля­ет уро­вень ра­ди­ационной об­ста­нов­ки в по­ме­ще­ни­ях АЭС.

АЭС прак­ти­че­ски все­гда стро­ят вбли­зи по­тре­би­те­лей энер­гии, т. к. рас­хо­ды на транс­пор­ти­ров­ку ядер­но­го то­п­ли­ва на АЭС, в от­ли­чие от уг­ле­во­до­род­но­го то­п­ли­ва для ТЭС, ма­ло влия­ют на се­бе­стои­мость вы­ра­ба­ты­вае­мой энер­гии (обыч­но ядер­ное то­п­ли­во в энер­ге­тич. ре­ак­то­рах за­ме­ня­ют на но­вое один раз в неск. лет), а пе­ре­да­ча как элек­трической, так и те­п­ло­вой энер­гии на боль­шие рас­стоя­ния за­мет­но по­вы­ша­ет их стои­мость. АЭС со­ору­жа­ют с под­вет­рен­ной сто­ро­ны от­но­си­тель­но бли­жай­ше­го на­се­лён­но­го пунк­та, во­круг неё соз­да­ют са­ни­тар­но-за­щит­ную зо­ну и зо­ну на­блю­де­ния, где про­жи­ва­ние на­се­ле­ния не­до­пус­ти­мо. В зо­не на­блю­де­ния раз­ме­ща­ют кон­троль­но-из­ме­ри­тель­ную ап­па­ра­ту­ру для по­сто­ян­но­го мо­ни­то­рин­га ок­ру­жаю­щей сре­ды.

АЭС – ос­но­ва ядер­ной энер­ге­ти­ки . Глав­ное их на­зна­че­ние – про­изводство элек­тро­энер­гии (АЭС кон­ден­са­ци­он­но­го ти­па) или ком­би­нированное про­изводство элек­тро­энер­гии и те­п­ла (атом­ные те­п­ло­элек­тро­цен­тра­ли – АТЭЦ). На АТЭЦ часть от­ра­бо­тав­ше­го в тур­би­нах па­ра от­во­дит­ся в т. н. се­те­вые те­п­ло­об­мен­ни­ки для на­гре­ва­ния во­ды, цир­ку­ли­рую­щей в замк­ну­тых се­тях те­п­ло­снаб­же­ния. В отдельных слу­ча­ях те­п­ло­вая энер­гия ядер­ных ре­ак­то­ров мо­жет ис­поль­зо­вать­ся толь­ко для нужд те­п­ло­фи­ка­ции (атом­ные стан­ции те­п­ло­снаб­же­ния – АСТ). В этом слу­чае на­гре­тая во­да из те­п­ло­об­мен­ни­ков пер­во­го-вто­ро­го кон­ту­ров по­сту­па­ет в се­те­вой те­п­ло­об­мен­ник, где от­да­ёт те­п­ло се­те­вой во­де и за­тем воз­вра­ща­ет­ся в кон­тур.

Од­но из пре­иму­ществ АЭС по срав­не­нию с обыч­ны­ми ТЭС – их вы­со­кая эко­ло­гич­ность, со­хра­няю­щая­ся при ква­ли­фи­цир. экс­плуа­та­ции ядер­ных ре­ак­то­ров. Су­ще­ст­вую­щие барь­е­ры ра­ди­ационной безо­пас­но­сти АЭС (обо­лоч­ки твэ­лов, кор­пус ядер­но­го ре­ак­то­ра и т. п.) пред­от­вра­ща­ют за­гряз­не­ние те­п­ло­но­си­те­ля ра­дио­ак­тив­ны­ми про­дук­та­ми де­ле­ния. Над ре­ак­тор­ным за­лом АЭС воз­во­дит­ся за­щит­ная обо­лоч­ка (кон­тей­мент) для ис­клю­че­ния по­па­да­ния в ок­ру­жаю­щую сре­ду ра­дио­ак­тив­ных ма­те­риа­лов при са­мой тя­жё­лой ава­рии – раз­гер­ме­ти­за­ции пер­во­го кон­ту­ра, рас­плав­ле­нии ак­тив­ной зо­ны. Под­го­тов­ка пер­со­на­ла АЭС пре­ду­смат­ри­ва­ет обу­че­ние на специальных тре­на­жё­рах (ими­та­то­рах АЭС) для от­ра­бот­ки дей­ст­вий как в штат­ных, так и в ава­рий­ных си­туа­ци­ях. На АЭС име­ется ряд служб, обес­пе­чи­ваю­щих нор­маль­ное функ­цио­ни­ро­ва­ние стан­ции, безо­пас­ность её пер­со­на­ла (напр., до­зи­мет­рический кон­троль, обес­пе­че­ние са­ни­тар­но-ги­гие­нических тре­бо­ва­ний и др.). На тер­ри­то­рии АЭС соз­да­ют временные хра­ни­ли­ща для све­же­го и от­ра­бо­тан­но­го ядер­но­го то­п­ли­ва, для жид­ких и твёр­дых ра­дио­ак­тив­ных от­хо­дов, по­яв­ляю­щих­ся при её экс­плуа­та­ции. Всё это при­во­дит к то­му, что стои­мость ус­та­нов­лен­но­го ки­ло­ват­та мощ­но­сти на АЭС бо­лее чем на 30% пре­вы­ша­ет стои­мость ки­ло­ват­та на ТЭС. Од­на­ко стои­мость от­пус­кае­мой по­тре­би­те­лю энер­гии, вы­ра­бо­тан­ной на АЭС, ни­же, чем на ТЭС, из-за очень ма­лой до­ли в этой стои­мо­сти то­п­лив­ной со­став­ляю­щей. Вслед­ст­вие вы­со­кой эко­но­мич­но­сти и осо­бен­но­стей ре­гу­ли­ро­ва­ния мощ­но­сти АЭС обыч­но ис­поль­зу­ют в ба­зо­вых ре­жи­мах, при этом ко­эффициент ис­поль­зо­ва­ния ус­та­нов­лен­ной мощ­но­сти АЭС мо­жет пре­вы­шать 80%. По ме­ре уве­ли­че­ния до­ли АЭС в об­щем энер­ге­тическом ба­лан­се ре­гио­на они мо­гут ра­бо­тать и в ма­нёв­рен­ном ре­жи­ме (для по­кры­тия не­рав­но­мер­но­стей на­груз­ки в ме­ст­ной энер­го­сис­те­ме). Спо­соб­ность АЭС ра­бо­тать дли­тель­ное вре­мя без сме­ны то­п­ли­ва по­зво­ля­ет ис­поль­зо­вать их в уда­лён­ных ре­гио­нах. Раз­ра­бо­та­ны АЭС, ком­по­нов­ка обо­ру­до­ва­ния ко­то­рых ос­но­ва­на на прин­ци­пах, реа­ли­зуе­мых в су­до­вых ядер­ных энер­ге­тич. ус­та­нов­ках (см. Ато­мо­ход ). Та­кие АЭС мож­но раз­мес­тить, напр., на бар­же. Пер­спек­тив­ны АЭС с ВТГР, вы­ра­ба­ты­ваю­щие те­п­ло­вую энер­гию для осу­ще­ст­в­ле­ния тех­но­ло­гических про­цес­сов в ме­тал­лур­гическом, хи­мическом и неф­тяном про­из­вод­ст­вах, при га­зи­фи­ка­ции уг­ля и слан­цев, в про­изводстве син­те­тического угле­во­до­род­но­го то­п­ли­ва. Срок экс­плуа­та­ции АЭС 25–30 лет. Вы­вод АЭС из экс­плуа­та­ции, де­мон­таж ре­ак­то­ра и ре­куль­ти­ва­ция её пло­щад­ки до со­стоя­ния «зе­лё­ной лу­жай­ки» – слож­ное и до­ро­го­стоя­щее ор­га­ни­за­ци­он­но-тех­ническое ме­ро­прия­тие, осу­ще­ст­в­ляе­мое по раз­ра­ба­ты­вае­мым в ка­ж­дом кон­крет­ном слу­чае пла­нам.

Первая в мире действующая АЭС мощностью 5000 кВт пущена в России в 1954 в г. Обнинск. В 1956 вступила в строй АЭС в Колдер-Холле в Великобритании (46 МВт), в 1957 – АЭС в Шиппингпорте в США (60 МВт). В 1974 пущена первая в мире АТЭЦ – Билибинская (Чукотский автономный окр.). Массовое строительство крупных экономичных АЭС началось во 2-й пол. 1960-х гг. Однако после аварии (1986) на Чернобыльской АЭС привлекательность ядерной энергетики заметно снизилась, а в ряде стран, имеющих достаточные собственные традиционные топливно-энергетические ресурсы или доступ к ним, строительство новых АЭС фактически прекратилось (Россия, США, Великобритания, ФРГ). В начале 21в., 11.3.2011 в Тихом океане у восточного побережья Японии в результате сильнейшего землетрясения магнитудой от 9,0 до 9,1 и последовавшего за ним цунами (высота волн достигала 40,5 м) на АЭС « Фукусима1 » (посёлок Окума, префектура Фукусима) произошла крупнейшая техногенная катастрофа – радиационная авария максимального 7-го уровня по Международной шкале ядерных событий. Удар цунами вывел из строя внешние средства электроснабжения и резервные дизельные генераторы, что явилось причиной неработоспособности всех систем нормального и аварийного охлаждения и привело к расплавлению активной зоны реакторов на энергоблоках 1, 2 и 3 в первые дни развития аварии. В декабре 2013 АЭС была официально закрыта. По состоянию на первую половину 2016 высокий уровень излучения делает невозможной работу не только людей в реакторных зданиях, но и роботов, которые из-за высокого уровня радиации выходят из строя. Планируется, что вывоз пластов почвы в специальные хранилища и её уничтожение займут 30 лет.

31 страна мира использует АЭС. На 2015 действует ок. 440 ядерных энергетических реакторов (энергоблоков) суммарной мощностью более 381 тыс. МВт (381 ГВт). Ок. 70 атомных реакторов находятся в стадии строительства. Мировым лидером по доле в общей выработке электроэнергии является Франция (второе место по установленной мощности), в которой ядерная энергетика составляет 76,9%.

Крупнейшая АЭС в мире на 2015 (по установленной мощности) – Касивадзаки-Карива (г. Касивадзаки, префектура Ниигата, Япония). В эксплуатации находятся 5 кипящих ядерных реакторов (BWR) и 2 улучшенных кипящих ядерных реактора (ABWR), суммарная мощность которых составляет 8212 МВт (8,212 ГВт).

Крупнейшая АЭС в Европе – Запорожская АЭС (г. Энергодар, Запорожская область, Украина). С 1996 работают 6 энергоблоков с реакторами типа ВВЭР-1000 суммарной мощностью 6000 МВт (6 ГВт).

Таблица 1. Крупнейшие потребители ядерной энергетики в мире
Государство Количество энергоблоков Суммарная мощность (МВт) Суммарная вырабатываемая
электроэнергия (млрд. кВт·ч/год)
США 104 101 456 863,63
Франция 58 63 130 439,74
Япония 48 42 388 263,83
Россия 34 24 643 177,39
Южная Корея 23 20 717 149,2
Китай 23 19 907 123,81
Канада 19 13 500 98,59
Украина 15 13 107 83,13
Германия 9 12 074 91,78
Великобритания 16 9373 57,92

США и Япония ведут разработки мини-АЭС, мощностью порядка 10–20 МВт для тепло- и электроснабжения отдельных производств, жилых комплексов, а в перспективе – и индивидуальных домов. Малогабаритные реакторы создаются с использованием безопасных технологий, многократно уменьшающих возможность утечки ядерного вещества.

В России на 2015 действует 10 АЭС, на которых эксплуатируются 34 энергоблока общей мощностью 24 643 МВт (24,643 ГВт), из них 18 энергоблоков с реакторами типа ВВЭР (из них 11 энергоблоков ВВЭР-1000 и 6 энергоблоков ВВЭР-440 различных модификаций); 15 энергоблоков с канальными реакторами (11 энергоблоков с реакторами типа РБМК-1000 и 4 энергоблока с реакторами типа ЭГП-6 – Энергетический Гетерогенный Петлевой реактор с 6 петлями циркуляции теплоносителя, электрической мощностью 12 МВт); 1 энергоблок с реактором на быстрых нейтронах с натриевым охлаждением БН-600 (в процессе ввода в промышленную эксплуатацию находится 1 энергоблок БН-800). Согласно Федеральной целевой программе «Развитие атомного энергопромышленного комплекса России», к 2025 доля электроэнергии, выработанной на атомных электростанциях РФ, должна увеличиться с 17 до 25% и составить ок. 30,5 ГВт. Планируется построить 26 новых энергоблоков, 6 новых АЭС, две из которых – плавучие (табл. 2).

Таблица 2. АЭС, действующие на территории РФ
Наименование АЭС Количество энергоблоков Годы ввода в эксплуа-тацию энерго-блоков Суммарная установ-ленная мощность (МВт) Тип реактора
Балаковская АЭС (близ г. Балаково) 4 1985, 1987, 1988, 1993 4000 ВВЭР-1000
Калининская АЭС [в 125 км от Твери на берегу реки Удомля (Тверская обл.)] 4 1984, 1986, 2004, 2011 4000 ВВЭР-1000
Курская АЭС (близ г. Курчатов на левом берегу реки Сейм) 4 1976, 1979, 1983, 1985 4000 РБМК-1000
Ленинградская АЭС (близ г. Сосновый Бор) 4 в стадии строительства – 4 1973, 1975, 1979, 1981 4000 РБМК-1000 (первая в стране станция с реакторами этого типа)
Ростовская АЭС (расположена на берегу Цимлянского водохранилища, в 13,5 км от г. Волгодонск) 3 2001, 2010, 2015 3100 ВВЭР-1000
Смоленская АЭС (в 3 км от города-спутника Десногорск) 3 1982, 1985, 1990 3000 РБМК-1000
Нововоронежская АЭС (близ г. Нововоронеж) 5; (2 – выведены), в стадии строительства – 2. 1964 и 1969 (выведены), 1971, 1972, 1980 1800 ВВЭР-440;
ВВЭР-1000
Кольская АЭС (в 200 км к югу от г. Мурманск на берегу озера Имандра) 4 1973, 1974, 1981, 1984 1760 ВВЭР-440
Белоярская АЭС (близ г. Заречный) 2 1980, 2015 600
800
БН-600
БН-800
Билибинская АЭС 4 1974 (2), 1975, 1976 48 ЭГП-6

Проектируемые АЭС в РФ

С 2008 по новому проекту АЭС-2006 (проект российской атомной станции нового поколения «3+» с улучшенными технико-экономическими показателями) строится Нововоронежская АЭС-2 (близ Нововоронежской АЭС), на которой предусматривается использование реакторов ВВЭР-1200. Ведётся сооружение 2 энергоблоков общей мощностью 2400 МВт, в дальнейшем планируется построить ещё 2. Пуск первого блока (блок № 6) Нововоронежской АЭС-2 состоялся в 2016, второго блока № 7 запланирован на 2018.

Балтийская АЭС предусматривает использование реакторной установки ВВЭР-1200 мощностью 1200 МВт; энергоблоков – 2. Суммарная установленная мощность 2300 МВт. Ввод в эксплуатацию первого блока планируется в 2020. Федеральным агентством по атомной энергии России ведётся проект по созданию плавучих атомных электростанций малой мощности. Строящаяся АЭС «Академик Ломоносов» станет первой в мире плавучей атомной электростанцией. Плавучая станция может использоваться для получения электрической и тепловой энергии, а также для опреснения морской воды. В сутки она может выдавать от 40 до 240 тыс. м 2 пресной воды. Установленная электрическая мощность каждого реактора – 35 МВт. Ввод станции в эксплуатацию планируется в 2018.

Международные проекты России по атомной энергетике

23.9.2013 Россия передала Ирану в эксплуатацию АЭС «Бушер» («Бушир») , близ г. Бушир (остан Бушир); количество энергоблоков – 3 (1 построен, 2 – в стадии сооружения); тип реактора – ВВЭР-1000. АЭС «Куданкулам», близ г. Куданкулам (штат Тамилнад, Индия); количество энергоблоков – 4 (1 – в эксплуатации, 3 – в стадии сооружения); тип реактора – ВВЭР-1000. АЭС «Akkuyu», близ г. Мерсин (иль Мерсин, Турция); количество энергоблоков – 4 (в стадии сооружения); тип реактора – ВВЭР-1200; Белорусская АЭС (г. Островец, Гродненская область, Белоруссия); количество энергоблоков – 2 (в стадии сооружения); тип реактора – ВВЭР-1200. АЭС «Hanhikivi 1» (мыс Ханхикиви, область Похйойс-Похьянмаа, Финляндия); количество энергоблоков – 1 (в стадии сооружения); тип реактора – ВВЭР-1200.

Атомная электростанция (АЭС)

электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую. Генератором энергии на АЭС является атомный реактор (см. Ядерный реактор). Тепло, которое выделяется в реакторе в результате цепной реакции деления ядер некоторых тяжёлых элементов, затем так же, как и на обычных тепловых электростанциях (См. Тепловая электростанция) (ТЭС), преобразуется в электроэнергию. В отличие от ТЭС, работающих на органическом топливе, АЭС работает на ядерном горючем (См. Ядерное горючее) (в основном 233 U, 235 U. 239 Pu). При делении 1 г изотопов урана или плутония высвобождается 22 500 квт ч, что эквивалентно энергии, содержащейся в 2800 кг условного топлива. Установлено, что мировые энергетические ресурсы ядерного горючего (уран, плутоний и др.) существенно превышают энергоресурсы природных запасов органического топлива (нефть, уголь, природный газ и др.). Это открывает широкие перспективы для удовлетворения быстро растущих потребностей в топливе. Кроме того, необходимо учитывать всё увеличивающийся объём потребления угля и нефти для технологических целей мировой химической промышленности, которая становится серьёзным конкурентом тепловых электростанций. Несмотря на открытие новых месторождений органического топлива и совершенствование способов его добычи, в мире наблюдается тенденция к относит увеличению его стоимости. Это создаёт наиболее тяжёлые условия для стран, имеющих ограниченные запасы топлива органического происхождения. Очевидна необходимость быстрейшего развития атомной энергетики, которая уже занимает заметное место в энергетическом балансе ряда промышленных стран мира.

Первая в мире АЭС опытно-промышленного назначения (рис. 1 ) мощностью 5 Мвт была пущена в СССР 27 июня 1954 г. в г. Обнинске. До этого энергия атомного ядра использовалась преимущественно в военных целях. Пуск первой АЭС ознаменовал открытие нового направления в энергетике, получившего признание на 1-й Международной научно-технической конференции по мирному использованию атомной энергии (август 1955, Женева).

В 1958 была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 Мвт (полная проектная мощность 600 Мвт ). В том же году развернулось строительство Белоярской промышленной АЭС, а 26 апреля 1964 генератор 1-й очереди (блок мощностью 100 Мвт ) выдал ток в Свердловскую энергосистему, 2-й блок мощностью 200 Мвт сдан в эксплуатацию в октябре 1967. Отличительная особенность Белоярской АЭС - перегрев пара (до получения нужных параметров) непосредственно в ядерном реакторе, что позволило применить на ней обычные современные турбины почти без всяких переделок.

В сентябре 1964 был пущен 1-й блок Нововоронежской АЭС мощностью 210 Мвт. Себестоимость 1 квт-ч электроэнергии (важнейший экономический показатель работы всякой электростанции) на этой АЭС систематически снижалась: она составляла 1,24 коп. в 1965, 1,22 коп. в 1966, 1,18 коп. в 1967, 0,94 коп. в 1968. Первый блок Нововоронежской АЭС был построен не только для промышленного пользования, но и как демонстрационный объект для показа возможностей и преимуществ атомной энергетики, надёжности и безопасности работы АЭС. В ноябре 1965 в г. Мелекессе Ульяновской области вступила в строй АЭС с водо-водяным реактором (См. Водо-водяной реактор) «кипящего» типа мощностью 50 Мвт, реактор собран по одноконтурной схеме, облегчающей компоновку станции. В декабре 1969 был пущен второй блок Нововоронежской АЭС (350 Мвт ).

За рубежом первая АЭС промышленного назначения мощностью 46 Мвт была введена в эксплуатацию в 1956 в Колдер-Холле (Англия).Через год вступила в строй АЭС мощностью 60 Мвт в Шиппингпорте (США).

Принципиальная схема АЭС с ядерным реактором, имеющим водяное охлаждение, приведена на рис. 2 . Тепло, выделяющееся в активной зоне (См. Активная зона) реактора 1, отбирается водой (теплоносителем (См. Теплоноситель)) 1-го контура, которая прокачивается через реактор циркуляционным насосом 2. Нагретая вода из реактора поступает в теплообменник (парогенератор) 3, где передаёт тепло, полученное в реакторе, воде 2-го контура. Вода 2-го контура испаряется в парогенераторе, и образующийся пар поступает в турбину 4.

Наиболее часто на АЭС применяются 4 типа реакторов на тепловых нейтронах: 1) водо-водяные с обычной водой в качестве замедлителя и теплоносителя; 2) графито-водные с водяным теплоносителем и графитовым замедлителем; 3) тяжеловодные с водяным теплоносителем и тяжёлой водой в качестве замедлителя; 4) графито-газовые с газовым теплоносителем и графитовым замедлителем.

Выбор преимущественно применяемого типа реактора определяется главным образом накопленным опытом в реакторостроении, а также наличием необходимого промышленного оборудования, сырьевых запасов и т. д. В СССР строят главным образом графито-водные и водо-водяные реакторы. На АЭС США наибольшее распространение получили водо-водяные реакторы. Графито-газовые реакторы применяются в Англии. В атомной энергетике Канады преобладают АЭС с тяжеловодными реакторами.

В зависимости от вида и агрегатного состояния теплоносителя создаётся тот или иной термодинамический цикл АЭС. Выбор верхней температурной границы термодинамического цикла определяется максимально допустимой температурой оболочек тепловыделяющих элементов (См. Тепловыделяющий элемент) (ТВЭЛ), содержащих ядерное горючее, допустимой температурой собственно ядерного горючего, а также свойствами тенлоносителя, принятого для данного типа реактора. На АЭС, тепловой реактор которой охлаждается водой, обычно пользуются низкотемпературными паровыми циклами. Реакторы с газовым теплоносителем позволяют применять относительно более экономичные циклы водяного пара с повышенными начальными давлением и температурой. Тепловая схема АЭС в этих двух случаях выполняется 2-контурной: в 1-м контуре циркулирует теплоноситель, 2-й контур - пароводяной. При реакторах с кипящим водяным или высокотемпературным газовым теплоносителем возможна одноконтурная тепловая АЭС. В кипящих реакторах вода кипит в активной зоне, полученная пароводяная смесь сепарируется, и насыщенный пар направляется или непосредственно в турбину, или предварительно возвращается в активную зону для перегрева (рис. 3 ). В высокотемпературных графито-газовых реакторах возможно применение обычного газотурбинного цикла. Реактор в этом случае выполняет роль камеры сгорания.

При работе реактора концентрация делящихся изотопов в ядерном топливе постепенно уменьшается, т. е. ТВЭЛы выгорают. Поэтому со временем их заменяют свежими. Ядерное горючее перезагружают с помощью механизмов и приспособлений с дистанционным управлением. Отработавшие ТВЭЛы переносят в бассейн выдержки, а затем направляют на переработку.

К реактору и обслуживающим его системам относятся: собственно реактор с биологической защитой (См. Биологическая защита), Теплообменник и, Насос ы или газодувные установки, осуществляющие циркуляцию теплоносителя; трубопроводы и арматура циркуляционного контура; устройства для перезагрузки ядерного горючего; системы спец. вентиляции, аварийного расхолаживания и др.

В зависимости от конструктивного исполнения реакторы имеют отличительные особенности: в корпусных реакторах (См. Корпусной реактор) ТВЭЛы и замедлитель расположены внутри корпуса, несущего полное давление теплоносителя; в канальных реакторах (См. Канальный реактор) ТВЭЛы, охлаждаемые теплоносителем, устанавливаются в специальных трубах-каналах, пронизывающих замедлитель, заключённый в тонкостенный кожух. Такие реакторы применяются в СССР (Сибирская, Белоярская АЭС и др.).

Для предохранения персонала АЭС от радиационного облучения реактор окружают биологической защитой, основным материалом для которой служат бетон, вода, серпентиновый песок. Оборудование реакторного контура должно быть полностью герметичным. Предусматривается система контроля мест возможной утечки теплоносителя, принимают меры, чтобы появление неплотностей и разрывов контура не приводило к радиоактивным выбросам и загрязнению помещений АЭС и окружающей местности. Оборудование реакторного контура обычно устанавливают в герметичных боксах, которые отделены от остальных помещений АЭС биологической защитой и при работе реактора не обслуживаются. Радиоактивный воздух и небольшое количество паров теплоносителя, обусловленное наличием протечек из контура, удаляют из необслуживаемых помещений АЭС специальной системой вентиляции, в которой для исключения возможности загрязнения атмосферы предусмотрены очистные фильтры и газгольдеры выдержки. За выполнением правил радиационной безопасности персоналом АЭС следит служба дозиметрического контроля.

При авариях в системе охлаждения реактора для исключения перегрева и нарушения герметичности оболочек ТВЭЛов предусматривают быстрое (в течение несколько секунд) глушение ядерной реакции; аварийная система расхолаживания имеет автономные источники питания.

Наличие биологические защиты, систем специальной вентиляции и аварийного расхолаживания и службы дозиметрического контроля позволяет полностью обезопасить обслуживающий персонал АЭС от вредных воздействий радиоактивного облучения.

Оборудование машинного зала АЭС аналогично оборудованию машинного зала ТЭС. Отличительная особенность большинства АЭС - использование пара сравнительно низких параметров, насыщенного или слабоперегретого.

При этом для исключения эрозионного повреждения лопаток последних ступеней турбины частицами влаги, содержащейся в пару, в турбине устанавливают сепарирующие устройства. Иногда необходимо применение выносных сепараторов и промежуточных перегревателей пара. В связи с тем что теплоноситель и содержащиеся в нём примеси при прохождении через активную зону реактора активируются, конструктивное решение оборудования машинного зала и системы охлаждения конденсатора турбины одноконтурных АЭС должно полностью исключать возможность утечки теплоносителя. На двухконтурных АЭС с высокими параметрами пара подобные требования к оборудованию машинного зала не предъявляются.

В число специфичных требований к компоновке оборудования АЭС входят: минимально возможная протяжённость коммуникаций, связанных с радиоактивными средами, повышенная жёсткость фундаментов и несущих конструкций реактора, надёжная организация вентиляции помещений. На рис. показан разрез главного корпуса Белоярской АЭС с канальным графито-водным реактором. В реакторном зале размещены: реактор с биологической защитой, запасные ТВЭЛы и аппаратура контроля. АЭС скомпонована по блочному принципу реактор - турбина. В машинном зале расположены турбогецераторы и обслуживающие их системы. Между машинным и реакторным залами размещены вспомогательное оборудование и системы управления станцией.

Экономичность АЭС определяется её основными техническими показателями: единичная мощность реактора, кпд, энергонапряжённость активной зоны, глубина выгорания ядерного горючего, коэффициент использования установленной мощности АЭС за год. С ростом мощности АЭС удельные капиталовложения в неё (стоимость установленного квт ) снижаются более резко, чем это имеет место для ТЭС. В этом главная причина стремления к сооружению крупных АЭС с большой единичной мощностью блоков. Для экономики АЭС характерно, что доля топливной составляющей в себестоимости вырабатываемой электроэнергии 30-40% (на ТЭС 60-70%). Поэтому крупные АЭС наиболее распространены в промышленно развитых районах с ограниченными запасами обычного топлива, а АЭС небольшой мощности - в труднодоступных или отдалённых районах, например АЭС в пос. Билибино (Якутская АССР) с электрической мощностью типового блока 12 Мвт. Часть тепловой мощности реактора этой АЭС (29 Мвт ) расходуется на теплоснабжение. Наряду с выработкой электроэнергии АЭС используются также для опреснения морской воды. Так, Шевченковская АЭС (Казахская ССР) электрической мощностью 150 Мвт рассчитана на опреснение (методом дистилляции) за сутки до 150 000 т воды из Каспийского моря.

В большинстве промышленно развитых стран (СССР, США, Англия, Франция, Канада, ФРГ, Япония, ГДР и др.) по прогнозам мощность действующих и строящихся АЭС к 1980 будет доведена до десятков Гвт. По данным Международного атомного агентства ООН, опубликованным в 1967, установленная мощность всех АЭС в мире к 1980 достигнет 300 Гвт.

В Советском Союзе осуществляется широкая программа ввода в строй крупных энергетических блоков (до 1000 Мвт ) с реакторами на тепловых нейтронах. В 1948-49 были начаты работы по реакторам на быстрых нейтронах для промышленных АЭС. Физические особенности таких реакторов позволяют осуществить расширенное воспроизводство ядерного горючего (коэффициент воспроизводства от 1,3 до 1,7), что даёт возможность использовать не только 235 U, но и сырьевые материалы 238 U и 232 Th. Кроме того, реакторы на быстрых нейтронах не содержат замедлителя, имеют сравнительно малые размеры и большую загрузку. Этим и объясняется стремление к интенсивному развитию быстрых реакторов в СССР. Для исследований по быстрым реакторам были последовательно сооружены экспериментальные и опытные реакторы БР-1, БР-2, БР-З, БР-5, БФС. Полученный опыт обусловил переход от исследований модельных установок к проектированию и сооружению промышленных АЭС на быстрых нейтронах (БН-350) в г. Шевченко и (БН-600) на Белоярской АЭС. Ведутся исследования реакторов для мощных АЭС, например в г. Мелекессе построен опытный реактор БОР-60.

Крупные АЭС сооружаются и в ряде развивающихся стран (Индия, Пакистан и др.).

На 3-й Международной научно-технической конференции по мирному использованию атомной энергии (1964, Женева) было отмечено, что широкое освоение ядерной энергии стало ключевой проблемой для большинства стран. Состоявшаяся в Москве в августе 1968 7-я Мировая энергетическая конференция (МИРЭК-VII) подтвердила актуальность проблем выбора направления развития ядерной энергетики на следующем этапе (условно 1980-2000), когда АЭС станет одним из основных производителей электроэнергии.

Лит.: Некоторые вопросы ядерной энергетики. Сб. ст., под ред. М. А. Стыриковича, М., 1959; Канаев А. А., Атомные энергетические установки, Л., 1961; Калафати Д. Д., Термодинамические циклы атомных электростанций, М.-Л., 1963; 10 лет Первой в мире атомной электростанции СССР. [Сб. ст.], М., 1964; Советская атомная наука и техника. [Сборник], М., 1967; Петросьянц А. М., Атомная энергетика наших дней, М., 1968.

С. П. Кузнецов.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Атомная электростанция" в других словарях:

    Электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую энергию. Генератором энергии на АЭС является атомный реактор. Синонимы: АЭС См. также: Атомные электростанции Электростанции Ядерные реакторы Финансовый словарь… … Финансовый словарь

    - (АЭС) электростанция, на которой ядерная (атомная) энергия преобразуется в электрическую. На АЭС тепло, выделяющееся в ядерном реакторе, используется для получения водного пара, вращающего турбогенератор. 1 я в мире АЭС мощнностью 5 МВт была… … Большой Энциклопедический словарь

Ядерный реактор работает слаженно и четко. Иначе, как известно, будет беда. Но что там творится внутри? Попытаемся сформулировать принцип работы ядерного (атомного) реактора кратко, четко, с остановками.

По сути, там творится тот же процесс, что и при ядерном взрыве. Только вот взрыв происходит очень быстро, а в реакторе все это растягивается на длительное время. В итоге все остается целым и невредимым, а мы получаем энергию. Не столько, чтобы все вокруг сразу разнесло, но вполне достаточную для того, чтобы обеспечить электричеством город.


Прежде чем понять, как идет управляемая ядерная реакция, нужно узнать, что такое ядерная реакция вообще.

Ядерная реакция – это процесс превращения (деления) атомных ядер при взаимодействии их с элементарными частицами и гамма-квантами.

Ядерные реакции могут проходить как с поглощением, так и с выделением энергии. В реакторе используются вторые реакции.

Ядерный реактор – это устройство, назначением которого является поддержание контролируемой ядерной реакции с выделением энергии.

Часто ядерный реактор называют еще и атомным. Отметим, что принципиальной разницы тут нет, но с точки зрения науки правильнее использовать слово "ядерный". Сейчас существует множество типов ядерных реакторов. Это огромные промышленные реакторы, предназначенные для выработки энергии на электростанциях, атомные реакторы подводных лодок, малые экспериментальные реакторы, используемые в научных опытах. Существуют даже реакторы, применяемые для опреснения морской воды.


История создания атомного реактора

Первый ядерный реактор был запущен в не таком уж и далеком 1942 году. Произошло это в США под руководством Ферми. Этот реактор назвали "Чикагской поленницей".

В 1946 году заработал первый советский реактор, запущенный под руководством Курчатова. Корпус этого реактора представлял собой шар семи метров в диаметре. Первые реакторы не имели системы охлаждения, и мощность их была минимальной. К слову, советский реактор имел среднюю мощность 20 Ватт, а американский – всего 1 Ватт. Для сравнения: средняя мощность современных энергетических реакторов составляет 5 Гигаватт. Менее чем через десять лет после запуска первого реактора была открыта первая в мире промышленная атомная электростанция в городе Обнинске.


Принцип работы ядерного (атомного) реактора

У любого ядерного реактора есть несколько частей: активная зона с топливом и замедлителем , отражатель нейтронов , теплоноситель , система управления и защиты . В качестве топлива в реакторах чаще всего используются изотопы урана (235, 238, 233), плутония (239) и тория (232). Активная зона представляет собой котел, через который протекает обычная вода (теплоноситель). Среди других теплоносителей реже используется «тяжелая вода» и жидкий графит. Если говорить про работу АЭС, то ядерный реактор используется для получения тепла. Само электричество вырабатывается тем же методом, что и на других типах электростанций - пар вращает турбину, а энергия движения преобразуется в электрическую энергию.

Приведем ниже схему работы ядерного реактора.


Как мы уже говорили, при распаде тяжелого ядра урана образуются более легкие элементы и несколько нейтронов. Образовавшиеся нейтроны сталкиваются с другими ядрами, также вызывая их деление. При этом количество нейтронов растет лавинообразно.

Здесь нужно упомянуть коэффициент размножения нейтронов . Так, если этот коэффициент превышает значение, равное единице, происходит ядерный взрыв. Если значение меньше единицы, нейтронов слишком мало и реакция угасает. А вот если поддерживать значение коэффициента равным единице, реакция будет протекать долго и стабильно.


Вопрос в том, как это сделать? В реакторе топливо находится в так называемых тепловыделяющих элементах (ТВЭЛах). Это стержни, в которых в виде небольших таблеток находится ядерное топливо . ТВЭЛы соединены в кассеты шестигранной формы, которых в реакторе могут быть сотни. Кассеты с ТВЭЛами располагаются вертикально, при этом каждый ТВЭЛ имеет систему, позволяющую регулировать глубину его погружения в активную зону. Помимо самих кассет среди них располагаются управляющие стержни и стержни аварийной защиты . Стержни изготовлены из материала, хорошо поглощающего нейтроны. Так, управляющие стержни могут быть опущены на различную глубину в активной зоне, тем самым регулируя коэффициент размножения нейтронов. Аварийные стержни призваны заглушить реактор в случае чрезвычайной ситуации.


Как запускают ядерный реактор?

С самим принципом работы мы разобрались, но как запустить и заставить реактор функционировать? Грубо говоря, вот он - кусок урана, но ведь цепная реакция не начинается в нем сама по себе. Дело в том, что в ядерной физике существует понятие критической массы .


Критическая масса – это необходимая для начала цепной ядерной реакции масса делящегося вещества.

При помощи ТВЭЛов и управляющих стержней в ректоре сначала создается критическая масса ядерного топлива, а потом реактор в несколько этапов выводится на оптимальный уровень мощности.

В данной статье мы постарались дать Вам общее представление об устройстве и принципе работы ядерного (атомного) реактора. Если у Вас остались вопросы по теме или в университете задали задачу по ядерной физике – обращайтесь к специалистам нашей компании . Мы, как обычно, готовы помочь Вам решить любой насущный вопрос по учебе. А пока мы этим занимаемся, Вашему вниманию очередное образовательное видео!

Атомная электроэнергетика – современный и быстро развивающийся способ добычи электричества. А вы знаете, как устроены атомные станции? Каков принцип работы АЭС? Какие типы ядерных реакторов сегодня существуют? Постараемся детально рассмотреть схему работы АЭС, вникнуть в устройство ядерного реактора и узнать о том, насколько безопасен атомный способ добычи электроэнергии.

Как устроена АЭС?

Любая станция – это закрытая зона вдалеке от жилого массива. На ее территории находятся несколько зданий. Самое главное сооружение – здание реактора, рядом с ним расположен машинный зал, из которого реактором управляют, и здание безопасности.

Схема невозможна без ядерного реактора. Атомный (ядерный) реактор – это устройство АЭС, которое призвано организовать цепную реакцию деления нейтронов с обязательным выделением энергии при этом процессе. Но каков принцип работы АЭС?

Вся реакторная установка помещается в здание реактора, большую бетонную башню, которая скрывает реактор и в случае аварии удержит в себе все продукты ядерной реакции. Эту большую башню называют контейнтмент, герметичная оболочка или гермозона.

Гермозона в новых реакторах имеет 2 толстые бетонные стенки – оболочки.
Внешняя оболочка толщиной в 80 см обеспечивает защиту гермозоны от внешних воздействий.

Внутренняя оболочка толщиной в 1 метр 20 см имеет в своем устройстве специальные стальные тросы, которые увеличивают прочность бетона почти в три раза и не дадут конструкции рассыпаться. С внутренней стороны она выложена тонким листом специальной стали, которая призвана служить дополнительной защитой контейнтмента и в случае аварии не выпустить содержимое реактора за пределы гермозоны.

Такое устройство атомной станции позволяет выдержать падение самолета весом до 200 тонн, 8 бальное землетрясение, торнадо и цунами.

Впервые герметичная оболочка была сооружена на американской АЭС Коннектикут Янки в 1968 году.

Полная высота гермозоны – 50-60 метров.

Из чего состоит атомный реактор?

Чтобы понять принцип работы ядерного реактора, а значит и принцип работы АЭС, нужно разобраться в составляющих реактора.

  • Активная зона. Это зона, куда помещается ядерное топливо (тепловыделитель) и замедлитель. Атомы топлива (чаще всего топливом выступает уран) совершают цепную реакцию деления. Замедлитель призван контролировать процесс деления, и позволяет провести нужную по скорости и силе реакцию.
  • Отражатель нейтронов. Отражатель окружает активную зону. Состоит он из того же материала, что и замедлитель. По сути это короб, главное назначение которого – не дать нейтронам выйти из активной зоны и попасть в окружающую среду.
  • Теплоноситель. Теплоноситель должен вобрать в себя тепло, которое выделилось при делении атомов топлива, и передать его другим веществам. Теплоноситель во многом определяет то, как устроена АЭС. Самый популярный теплоноситель на сегодня – вода.
    Система управления реактором. Датчики и механизмы, которые приводят реактор АЭС в действие.

Топливо для АЭС

На чем работает АЭС? Топливо для АЭС – это химические элементы, обладающие радиоактивными свойствами. На всех атомных станциях таким элементом выступает уран.

Устройство станций подразумевает, что АЭС работают на сложном составном топливе, а не на чистом химическом элементе. И чтобы из природного урана добыть урановое топливо, которое загружается в ядерный реактор, нужно провести множество манипуляций.

Обогащенный уран

Уран состоит из двух изотопов, то есть в его составе есть ядра с разной массой. Назвали их по количеству протонов и нейтронов изотоп -235 и изотоп-238. Исследователи 20 века начали добывать из руды 235й уран, т.к. его легче было разлагать и преобразовывать. Выяснилось, что такого урана в природе всего 0,7 % (остальные проценты достались 238му изотопу).

Что делать в этом случае? Уран решили обогащать. Обогащение урана это процесс, когда в нем остается много нужных 235х изотопов и мало ненужных 238х. Задача обогатителей урана – из 0.7% сделать почти 100% урана-235.

Обогатить уран можно с помощью двух технологий – газодиффузионной или газоцентрифужной. Для их использования уран, добытый из руды, переводят в газообразное состояние. В виде газа его и обогащают.

Урановый порошок

Обогащенный урановый газ переводят в твердое состояние – диоксид урана. Такой чистый твердый 235й уран выглядит как большие белые кристаллы, которые позже дробят в урановый порошок.

Урановые таблетки

Урановые таблетки – это твердые металлические шайбы, длиной в пару сантиметров. Чтобы из уранового порошка слепить такие таблетки, его перемешивают с веществом – пластификатором, он улучшает качество прессования таблеток.

Прессованные шайбы запекают при температуре 1200 градусов по Цельсию более суток, чтобы придать таблеткам особую прочность и устойчивость к высоким температурам. То, как работает АЭС, напрямую зависит от того, насколько хорошо спрессовали и запекли урановое топливо.

Запекают таблетки в молибденовых ящиках, т.к. только этот металл способен не расплавиться при «адских» температурах свыше полутора тысяч градусов. После этого урановое топливо для АЭС считается готовым.

Что такое ТВЭЛ и ТВС?

Активная зона реактора внешне выглядит как огромный диск или труба с дырками в стенках (в зависимости от типа реактора), раз в 5 больше человеческого тела. В этих дырках находится урановое топливо, атомы которого и проводят нужную реакцию.

Просто так закинуть топливо в реактор невозможно, ну, если вы не хотите получить взрыв всей станции и аварию с последствиями на пару близлежащих государств. Поэтому урановое топливо помещается в ТВЭЛы, а потом собирается в ТВС. Что значат эти аббревиатуры?

  • ТВЭЛ – тепловыделяющий элемент (не путать с одноименным названием российской компании, которая их производит). По сути это тонкая и длинная циркониевая трубка, сделанная из сплавов циркония, в которую помещаются урановые таблетки. Именно в ТВЭЛах атомы урана начинают взаимодействовать друг с другом, выделяя тепло при реакции.

Цирконий выбран материалом для производства ТВЭЛов благодаря его тугоплавкости и антикоррозийности.

Тип ТВЭЛов зависит от типа и строения реактора. Как правило, строение и назначение ТВЭЛов не меняется, разными могут быть длина и ширина трубки.

В одну циркониевую трубку автомат загружает более 200 урановых таблеток. Всего в реакторе одновременно работают около 10 миллионов урановых таблеток.
ТВС – тепловыделяющая сборка. Работники АЭС называют ТВС пучками.

По сути это несколько ТВЭЛов, скрепленных между собой. ТВС – это готовое атомное топливо, то, на чем работает АЭС. Именно ТВС загружаются в ядерный реактор. В один реактор помещаются около 150 – 400 ТВС.
В зависимости от того, в каком реакторе ТВС будет работать, они бывают разной формы. Иногда пучки складываются в кубическую, иногда в цилиндрическую, иногда в шестиугольную форму.

Одна ТВС за 4 года эксплуатации вырабатывает столько же энергии как при сжигании 670 вагонов угля, 730 цистерн с природным газом или 900 цистерн, груженных нефтью.
Сегодня ТВС производят в основном на заводах России, Франции, США и Японии.

Чтобы доставить топливо для АЭС в другие страны, ТВС запечатывают в длинные и широкие металлические трубы, из труб выкачивают воздух и специальными машинами доставляют на борта грузовых самолетов.

Весит ядерное топливо для АЭС запредельно много, т.к. уран – один из самых тяжелых металлов на планете. Его удельный вес в 2,5 раза больше, чем у стали.

Атомная электростанция: принцип работы

Каков принцип работы АЭС? Принцип работы АЭС базируется на цепной реакции деления атомов радиоактивного вещества – урана. Эта реакция происходит в активной зоне ядерного реактора.

Если не вдаваться в тонкости ядерной физики, принцип работы АЭС выглядит так:
После пуска ядерного реактора из ТВЭЛов извлекаются поглощающие стержни, которые не дают урану вступить в реакцию.

Как только стрежни извлечены, нейтроны урана начинают взаимодействовать друг с другом.

Когда нейтроны сталкиваются, происходит мини-взрыв на атомном уровне, выделяется энергия и рождаются новые нейтроны, начинает происходить цепная реакция. Этот процесс выделяет тепло.

Тепло отдается теплоносителю. В зависимости от типа теплоносителя оно превращается в пар или газ, которые вращают турбину.

Турбина приводит в движение электрогенератор. Именно он по факту и вырабатывает электрический ток.

Если не следить за процессом, нейтроны урана могут сталкиваться друг с другом до тех пор, пока не взорвут реактор и не разнесут всю АЭС в пух и прах. Контролируют процесс компьютерные датчики. Они фиксируют повышение температуры или изменение давления в реакторе и могут автоматически остановить реакции.

Чем отличается принцип работы АЭС от ТЭС (теплоэлектростанций)?

Различия в работе есть только на первых этапах. В АЭС теплоноситель получает тепло от деления атомов уранового топлива, в ТЭС теплоноситель получает тепло от сгорания органического топлива (угля, газа или нефти). После того, как или атомы урана, или газ с углём выделили тепло, схемы работы АЭС и ТЭС одинаковы.

Типы ядерных реакторов

То, как работает АЭС, зависит от того, как именно работает ее атомный реактор. Сегодня есть два основных типа реакторов, которые классифицируются по спектру нейронов:
Реактор на медленных нейтронах, его также называют тепловым.

Для его работы используется 235й уран, который проходит стадии обогащения, создания урановых таблеток и т.д. Сегодня реакторов на медленных нейтронах подавляющее большинство.
Реактор на быстрых нейтронах.

За этими реакторами будущее, т.к. работают они на уране-238, которого в природе пруд пруди и обогащать этот элемент не нужно. Минус таких реакторов только в очень больших затратах на проектирование, строительство и запуск. Сегодня реакторы на быстрых нейтронах работают только в России.

Теплоносителем в реакторах на быстрых нейтронах выступает ртуть, газ, натрий или свинец.

Реакторы на медленных нейтронах, которыми сегодня пользуются все АЭС мира, тоже бывают нескольких типов.

Организация МАГАТЭ (международное агентство по атомной энергетике) создало свою классификацию, которой пользуются в мировой атомной энергетике чаще всего. Так как принцип работы атомной станции во многом зависит от выбора теплоносителя и замедлителя, МАГАТЭ базировали свою классификацию на этих различиях.


С химической точки зрения оксид дейтерия идеальный замедлитель и теплоноситель, т.к. ее атомы наиболее эффективно взаимодействуют с нейтронами урана по сравнению с другими веществами. Попросту говоря, свою задачу тяжелая вода выполняет с минимальными потерями и максимальным результатом. Однако ее производство стоит денег, в то время как обычную «легкую» и привычную для нас воду использовать куда проще.

Несколько фактов об атомных реакторах…

Интересно, что один реактор АЭС строят не менее 3х лет!
Для постройки реактора необходимо оборудование, которое работает на электрическом токе в 210 кило Ампер, что в миллион раз превышает силу тока, которая способна убить человека.

Одна обечайка (элемент конструкции) ядерного реактора весит 150 тонн. В одном реакторе таких элементов 6.

Водо-водяной реактор

Как работает АЭС в целом, мы уже выяснили, чтобы все «разложить по полочкам» посмотрим, как работает наиболее популярный водо-водяной ядерный реактор.
Во всем мире сегодня используют водо-водяные реакторы поколения 3+. Они считаются самыми надежными и безопасными.

Все водо-водяные реакторы в мире за все годы их эксплуатации в сумме уже успели набрать более 1000 лет безаварийной работы и ни разу не давали серьезных отклонений.

Структура АЭС на водо-водяных реакторах, подразумевает, что между ТВЭЛами циркулирует дистиллированная вода, нагретая до 320 градусов. Чтобы не дать ей перейти в парообразное состояние ее держат под давлением в 160 атмосфер. Схема АЭС называет ее водой первого контура.

Нагретая вода попадает в парогенератор и отдает свое тепло воде второго контура, после чего снова «возвращается» в реактор. Внешне это выглядит так, что трубки воды первого контура соприкасаются с другими трубками – воды второго контура, они передают тепло друг другу, но воды не контактируют. Контактируют трубки.

Таким образом, исключена возможность попадания радиации в воду второго контура, которая будет далее участвовать в процессе добычи электричества.

Безопасность работы АЭС

Узнав принцип работы АЭС мы должны понимать как же устроена безопасность. Устройство АЭС сегодня требует повышенного внимания к правилам безопасности.
Затраты на безопасность АЭС составляют примерно 40% от общей стоимости самой станции.

В схему АЭС закладываются 4 физических барьера, которые препятствуют выходу радиоактивных веществ. Что должны делать эти барьеры? В нужный момент суметь прекратить ядерную реакцию, обеспечивать постоянный отвод тепла от активной зоны и самого реактора, предотвращать выход радионуклеидов за пределы контайнмента (гермозоны).

  • Первый барьер – прочность урановых таблеток. Важно, чтобы они не разрушались под воздействием высоких температур в ядерном реакторе. Во многом то, как работает атомная станция, зависит от того, как «испекли» таблетки из урана на начальной стадии изготовления. Если таблетки с урановым топливом запечь неверно, то реакции атомов урана в реакторе будут непредсказуемыми.
  • Второй барьер – герметичность ТВЭЛов. Циркониевые трубки должны быть плотно запечатаны, если герметичность будет нарушена, то в лучшем случае реактор будет поврежден и работа остановлена, в худшем – все взлетит на воздух.
  • Третий барьер – прочный стальной корпус реактор а, (та самая большая башня – гермозона) который «удерживает» в себе все радиоактивные процессы. Повредится корпус – радиация выйдет в атмосферу.
  • Четвертый барьер – стержни аварийной защиты. Над активной зоной на магниты подвешиваются стержни с замедлителями, которые могут за 2 секунды поглотить все нейтроны и остановить цепную реакцию.

Если, несмотря на устройство АЭС с множеством степеней защиты, охладить активную зону реактора в нужный момент не удастся, и температура топлива возрастет до 2600 градусов, то в дело вступает последняя надежда системы безопасности – так называемая ловушка расплава.

Дело в том, что при такой температуре дно корпуса реактора расплавится, и все остатки ядерного топлива и расплавленных конструкций стекут в специальный подвешенный над активной зоной реактора «стакан».

Ловушка расплава охлаждаема и огнеупорна. Она наполнена так называемым «жертвенным материалом», который постепенно останавливает цепную реакцию деления.

Таким образом, схема АЭС подразумевает несколько степеней защиты, которые практически полностью исключают любую возможность аварии.

Одной из самых глобальных проблем человечества является энергетика. Гражданская инфраструктура, промышленность, вооруженные силы - все это требует огромного количества электричества, а для его выработки ежегодно выделяется масса полезных ископаемых. Проблема состоит в том, что эти ресурсы не бесконечны, и уже сейчас, пока ситуация более или менее стабильна, нужно задуматься о будущем. Огромные надежды возлагались на альтернативное, чистое электричество, однако, как показывает практика, конечный результат далек от желаемого. Затраты на солнечные или ветряные электростанции огромны, а количество энергии - минимально. И именно поэтому сейчас атомные электростанции считаются самым перспективным вариантом дальнейшего развития.

История АЭС

Первые идеи касательно использования атома для выработки электроэнергии появились в СССР примерно в 40-х годах XX века, почти за 10 лет до создания собственного оружия массового поражения на этой основе. В 1948 году был разработан принцип работы АЭС и тогда же получилось впервые в мире запитать приборы от атомной энергии. В 1950-м США заканчивает строительство небольшого атомного реактора, который можно считать на тот момент единственной электростанцией на планете такого типа. Правда, он был экспериментальным и мощности выдавал всего 800 Вт. В то же время в СССР закладывается фундамент первой в мире полноценной АЭС, хотя после введения в строй она все же не выдавала электричество в промышленных масштабах. Использовался этот реактор больше для оттачивания технологии.

С этого момента началось массовое строительство атомных электростанций по всему миру. Помимо традиционных лидеров в этой «гонке», США и СССР, первые реакторы появлялись в:

  • 1956 г. - Великобритания.
  • 1959 г. - Франция.
  • 1961 г. - Германия.
  • 1962 г. - Канада.
  • 1964 г. - Швеция.
  • 1966 г. - Япония.

Количество возводимых АЭС постоянно увеличивалось, вплоть до Чернобыльской катастрофы, после чего строительство начало замораживаться и постепенно многие страны стали отказываться от атомной энергии. На данный момент новые такие электростанции появляются в основном в России и Китае. Некоторые страны, ранее планировавшие перейти на энергию другого типа, постепенно возвращаются в программу и в ближайшем будущем возможен очередной скачок строительства АЭС. Это обязательный этап развития человечества, по крайней мере до тех пор, пока не будут найдены другие эффективные варианты производства энергии.

Особенности атомной энергетики

Самый главный плюс заключается в выработке огромного количества энергии с минимальными затратами топлива при практически полностью отсутствующих загрязнениях. Принцип работы атомного реактора АЭС основан на простом паровом двигателе и в качестве основного элемента использует воду (не считая самого топлива), потому с точки зрения экологии вред получается минимальным. Потенциальная опасность электростанций такого типа сильно преувеличена. Причины катастрофы в Чернобыле до сих пор достоверно не установлены (об этом ниже) и более того, вся собранная в рамках расследования информация позволила модернизировать уже имеющиеся станции, исключив даже маловероятные варианты выбросов радиации. Экологи иногда говорят, что такие станции являются мощным источником теплового загрязнения, но это тоже не совсем верно. Действительно, горячая вода из второго контура попадает в водоемы, но чаще всего используются их искусственные варианты, созданные специально для этого, а в остальных случаях доля такого повышения температуры не идет ни в какое сравнение с загрязнениями от других источников энергии.

Проблема топлива

Не последнюю роль в популярности АЭС играет топливо - уран-235. Его требуется значительно меньше, чем любых других видов с одновременным огромным выбросом энергии. Принцип работы реактора АЭС подразумевает использование этого топлива в виде специальных «таблеток», уложенных в стержни. Фактически, единственная сложность в данном случае заключается в создании именно такой формы. Тем не менее в последнее время начинает появляться информация, что текущих мировых запасов тоже не хватит надолго. Но и это уже предусмотрено. Самые новые трехконтурные реакторы работают на уране-238, которого очень много, и проблема дефицита топлива исчезнет надолго.

Принцип работы двухконтурной АЭС

Как уже было сказано выше, в основе лежит обычный паровой двигатель. Если кратко, принцип работы АЭС заключается в нагреве воды из первого контура, которая в свою очередь нагревает воду второго контура до состояния пара. Он проступает в турбину, вращая лопасти, в результате чего генератор вырабатывает электричество. «Отработанный» пар попадает в конденсатор и вновь превращается в воду. Таким образом получается практически замкнутый цикл. В теории все это могло работать еще проще, при помощи только одного контура, однако это уже действительно небезопасно, так как вода в нем в теории может подвергаться заражению, что исключено при использовании стандартной для большинства АЭС системы с двумя изолированными друг от друга циклами воды.

Принцип работы трехконтурной АЭС

Это уже более современные электростанции, которые работают на уране-238. Его запасы составляют более 99 % всех радиоактивных элементов в мире (отсюда и следуют огромные перспективы использования). Принцип работы и устройство АЭС такого типа заключается уже в наличии целых трех контуров и активном применении жидкого натрия. В целом, все остается примерно таким же, но с небольшими дополнениями. В первом контуре, нагреваясь непосредственно от реактора, циркулирует этот жидкий натрий при высокой температуре. Второй круг нагревается от первого и также использует ту же самую жидкость, но не настолько разогретую. И только потом, уже в третьем контуре, используется вода, которая нагревается от второго до состояния пара и вращает турбину. Система получается более сложной технологически, но построить такую АЭС нужно только один раз, а потом останется только наслаждаться плодами труда.

Чернобыль

Принцип работы АЭС «Чернобыль», как считается, стал главной причиной катастрофы. Официально существуют две версии случившегося. По одной проблема возникла из-за неправильных действий операторов реактора. По второй - из-за неудачной конструкции электростанции. Однако принцип работы Чернобыльской АЭС использовался и в других станциях такого типа, которые исправно функционируют и по сей день. Есть мнение, что произошла цепь случайностей, повторить которую практически невозможно. Это и небольшое землетрясение в том районе, проведение эксперимента с реактором, мелкие проблемы самой конструкции и так далее. Все вместе это стало причиной взрыва. Тем не менее до сих пор неизвестна причина, вызвавшая резкое возрастание мощности работы реактора тогда, когда он этого не должен был делать. Было даже мнение о возможной диверсии, но доказать что-либо не удалось и по сей день.

Фукусима

Это еще один пример глобальной катастрофы с участием атомной электростанции. И в данном случае также причиной стала цепь случайностей. Станция была надежно защищена от землетрясений и цунами, которые не редкость на Японском побережье. Мало кто мог предположить, что оба эти события произойдут одновременно. Принцип работы генератора АЭС «Фукусима» предполагал использование внешних источников энергии для поддержания в работоспособности всего комплекса безопасности. Это разумная мера, так как получить энергию от самой станции в процессе аварии было бы затруднительно. Из-за землетрясения и цунами все эти источники вышли из строя, из-за чего реакторы расплавились и произошла катастрофа. Сейчас проводятся меры по устранению ущерба. По оценкам специалистов, на это уйдет еще около 40 лет.

Несмотря на всю свою эффективность, атомная энергия все еще остается достаточно дорогой, ведь принципы работы парогенератора АЭС и остальных ее компонентов подразумевает огромные затраты на строительство, которые нужно окупить. Сейчас электричество от угля и нефти пока еще обходится дешевле, но эти ресурсы уже в ближайшие десятилетия закончатся, и в течение следующих нескольких лет атомная энергия будет обходиться дешевле, чем что-либо. На данный момент экологически чистое электричество из альтернативных источников энергии (ветряные и солнечные электростанции) обходится примерно в 20 раз дороже.

Считается, что принцип работы АЭС не дает строить такие станции быстро. Это неправда. На возведение среднестатистического объекта подобного типа уходит примерно 5 лет.

Станции отлично защищены не только от потенциальных выбросов радиации, но и от большинства внешних факторов. К примеру, если бы террористы вместо башен-близнецов выбрали любую АЭС, то они смогли бы нанести только минимальный вред окружающей инфраструктуре, что никак не повлияет на работу реактора.

Итоги

Принцип работы АЭС практически не отличается от принципов работы большинства других традиционных электростанций. Везде используется энергия пара. В гидроэлектростанциях применяется напор текущей воды, и даже в тех моделях, которые работают от энергии солнца, также используется жидкость, нагреваемая до состояния кипения и вращающая турбины. Единственное исключение из этого правила - ветряные станции, в которых лопасти крутятся за счет движения воздушных масс.

Вверх